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This paper presents a systematic methodology for designing a hard real-time multi-core testbed to

validate and benchmark various rate monotonic scheduling (RMS)-based task allocation and scheduling

schemes in energy consumption. The hard real-time multi-core testbed comprises Intel Core Duo T2500

processor with dynamic voltage scaling (DVS) capability and runs the Linux Fedora 8 operating system

supporting soft real-time scheduling. POSIX threads API and Linux FIFO scheduling policy are utilized to

facilitate the design and Dhrystone-based tasks are generated to verify the design. A LabView-based

DAQ system is designed to measure the energy consumption of CPU and system board of the testbed.

A case study of task allocation and scheduling algorithms is also presented that aim to optimize the

schedule feasibility and energy consumed by the processor and memory module in the multi-core

platform. The experience from the implementation is summarized to serve as potential guidelines for

other researchers and practitioners.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Energy consumption has emerged as an important design
constraint in battery-powered portable and embedded hard
real-time systems. Since the energy budget of these systems is
limited, it is desirable to minimize energy consumption to
maximize system lifetime. Moreover, the power density of pro-
cessors is continuously increasing with the scaling of each
technology generation. Energy efficient design at system level is
imperative to reduce the average power consumption, and hence
the dissipated heat. This is because low heat dissipation is of
particular importance to hard real-time applications such as
medical implantations, avionic controls, and deep space missions
that require systems with small form factors.

Hard real-time systems are typically designed for corner
cases where resources are provided for the worst case execution
time (WCET). Since, in the average case, tasks do not execute
up to their WCET, system level techniques such as dynamic
voltage scaling (DVS) could be utilized to achieve energy savings.
However, using DVS for energy savings may result in the violation
of task timing constraints due to the prolonged task execution
time. A tradeoff must be made between energy savings and delay.
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Energy efficient scheduling schemes for hard real-time systems
aim to maximize energy savings by applying DVS while satisfying
task timing constraints.

In the past decade, numerous DVS-based energy efficient task
allocation and scheduling schemes have been proposed for both
uniprocessor and multiprocessor systems [1–4]. Most of these
schemes are derived based on idealized operating conditions
and energy models. Although theoretically idealized models
simplify the analysis and simulations, practical applications must
deal with other important constraints added to the models. Hence,
designing a real-life test bed could be very valuable to evaluate and
validate the modeling assumptions and scheduling solutions under
different yet more accurate environmental conditions.

In this paper, a systematic methodology is presented to imple-
ment and validate schemes for energy efficient task allocation and
scheduling in multi-core hard real-time embedded systems. A real-
life test bed comprising the dual-core Intel T2500 processor with
DVS capability and running Linux Fedora 8-based hard real-time
scheduling has been developed to accurately benchmark energy
savings of various task allocation and scheduling schemes. A case
study of task allocation and scheduling algorithms is also pre-
sented that aim to optimize the schedule feasibility and energy
consumed by the processor and memory module in the multi-core
platform. Dhrystone benchmark program-based tasks with varying
characteristics are generated, allocated, and scheduled on indivi-
dual cores of the processor using the algorithms implemented. An
NI LabView-based data acquisition system is also designed and set
up for energy measurement.
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1.1. Related work

Extensive investigations have been carried out on energy
efficient task allocation and scheduling for both uniprocessor
and multiprocessor systems [1–4]. With the technology advances
towards deep submicro-devices, research on hard real-time
scheduling has been extended to jointly optimize schedule
feasibility and multidimensional constraints such as energy and
fault-tolerance. Melham et al. presented DVS techniques to
exploit slacks in task schedules to reduce energy consumption
while tolerating faults [5]. They made a simplifying assumption
that processor frequency can be scaled in continuous range.
Zhang et al. proposed energy efficient techniques based on offline
rate monotonic scheduling (RMS) to tolerate faults in hard real-
time systems [6]. Wei et al. also proposed low-cost offline
RMS-based scheduling algorithms, but their algorithms can be
extended to the runtime scenario by combining feasibility analy-
sis and voltage scaling based on the exact characterization of
RMS [7]. They also proposed energy efficient task allocation and
scheduling schemes with deterministic fault-tolerance capabil-
ities for symmetric multiprocessor systems executing tasks with
hard real-time constraints [8]. However, all these energy efficient
task allocation and scheduling solutions were validated in
simulated environments without considering practical impact of
platforms.

Research effort also has been made to explore the methodol-
ogy of incorporating various scheduling algorithms into operating
systems. In [9], Mercer et al. designed a processor capacity
reservation mechanism which permits threads to specify their
CPU resource requirements and implemented the mechanism in
the real-time Mach operating system. The scheme was further
improved in [10] to provide dynamic quality of service support.
Chu et al. [11] implemented a soft real-time CPU server for
continuous media processing in the SUN Solaris 2.5 operating
system. In [12], Pedreiras et al. presented a process management
library that provides timing services for soft real-time application
on top of general operating systems with substantial hardware
independence. The library executes completely within user space
and provides support for periodic process activations. However,
these implementations focus on soft real-time applications
where violation of timing constraints does not cause catastrophic
results, hence are not well suited for hard real-time systems.
Swaminathan et al. proposed an earliest deadline first (EDF)-
based energy efficient online scheduling algorithm (LEDF). LEDF
was implemented on a laptop equipped with AMD’s Power Now!
DVS-capable processor and RTLinux operating system [13]. LEDF
is a dynamic priority and non-preemptive scheduling algorithm.
Although online EDF algorithm dominates over fixed priority
offline scheduling algorithms such as rate monotonic scheduling
in feasibility performance, fixed priority and preemptive algo-
rithms are of great practical importance. Most real-time schedul-
ing algorithms, especially in hard real-time systems, use fixed
priority assignment due to the relatively lower overhead and
higher predictability [14].

This paper describes the practical experience in implementing
RMS-based energy efficient algorithms for hard real-time systems
on a multi-core embedded platform that support dynamic voltage
scaling and Linux operating system of soft real-time scheduling
capability. It is assumed that the RMS-based fixed priority
scheduling algorithms to be implemented are preemptive and
the tasks to be executed are periodic and independent. This
experience provides guidelines to implement and validate hard
real-time scheduling algorithms on top of an operating system
supporting soft real-time scheduling and to benchmark energy
consumptions of the algorithms on a multi-core embedded plat-
form. The algorithms presented in [6–8] were implemented and
Dhrystone-based real-life tasks were generated to verify the
implementation.

1.2. Outline

The rest of the paper is organized as follows. Section 2
describes the construction of the hardware and software platform
on which an energy efficient task scheduling algorithm is to be
implemented. Section 3 presents the detailed process of imple-
menting the scheduling algorithm on the constructed platform.
Section 4 outlines the construction of an energy measurement
platform. Section 5 presents the experimental results and Section
6 concludes the paper.
2. Construction of the implementation platform

The implementation of an RMS-based energy efficient sche-
duling algorithm entails that a combination of a hardware and
software platform on which the algorithm is to be built supports
dynamic voltage scaling and multiprocessor scheduling. The
integration of the scheduling algorithm into the selected platform
should be simple enough so that the implementation and energy
measurement are accomplishable. In addition, relevant docu-
ments should be available for references.

2.1. Selection of hardware platform

RMS-based fixed priority and preemptive scheduling algo-
rithms for hard real-time systems were to be validated on a
real-life test bed comprising a DVS-capable multi-core processor.
Even though there are several multi-core development kits
available in the market, selecting one that satisfies all the
implementation requirements proved quite challenging. For
example, most of the existing multi-core development kits do
not support hard real-time operating systems. Further, processor
cores of the platform must support DVS in order to implement the
scheduling algorithm. Since one of the main goals of the project was
to investigate and benchmark the energy consumed by an
embedded system under various scheduling algorithms, it is desir-
able that the platform provides an efficient mechanism to measure
the energy consumption of different system components.

After much deliberation and extensive surveying, mini-ITX
Express motherboard, Endura TP945GM from Radisys Corpora-
tion, emerged as the preferred choice. It mainly comprises an Intel
core duo T2500 processor, an Intel mobile 945GM Express
chipset, an Intel ICH7-M I/O controller hub, and a 512M Micron
DDR2 SDRAM-based memory module [15]. Intel T2500 is a DVS-
capable processor with 2 MB L2 cache and a VID voltage range
from 1.1625 to 1.30 V. It supports 4 CPU frequencies of 2.0, 1.67,
1.33, and 1 GHz under the CPU frequency driver of P4-clockmod.
It also supports low power features such as enhanced deeper
sleep mode and Intel enhanced speedstep technology. The mini-
mum and maximum power dissipation of T2500 is 8.71 and 44 W,
respectively, and the thermal design power of T2500 is 31 W. The
Endura TP945GM motherboard also includes an 80 GB hard
drive and provides plenty of sockets, ports, and connectors for
expansion.

The Endura TP945GM motherboard is powered by a 200 W
small form factor flex ATX power supply unit (FSP200-50PLA).
Fig. 1 shows the connections between the power supply unit
(PSU) and mini-ITX mother board. The PSU is connected to the
motherboard and hard drive through ATX connectors. One four-
pin ATX connector connects the PSU to the voltage regulator
module (VRM) dedicated to CPU, the other four-pin connector
connects the PSU to the hard drive, and a 20-pin connector
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connects the PSU to the system board. The 20-pin ATX connector
provides voltage supplies to components on the mini-ITX mother-
board, which are listed in Table 1.

Since one goal of the implementation is to benchmark the
energy consumption of scheduling algorithms on the Endura
TP945GM motherboard, especially the energy consumed by the
processor and memory module, modules such as system fans, CPU
fan, USB controller, audio device, LAN driver, PCI express ports,
and hard drive are disabled to improve the precision of the
measurement. Fig. 1 shows the enabled components in green
and disabled components in blue.
2.2. Selection of software architecture

State-of-the-art real-time operating systems (RTOSs) have
been investigated as options of the operating system for the
Endura TP945GM motherboard. These RTOSs can be broadly
classified into two categories: commercial and open source.
Commercial RTOSs such as Windows CE, Nucleus RTOS, LynxOS,
VxWorks, and Radisys OS-9 were not chosen mainly because
these RTOSs are not open source and hence their schedulers can
not be modified to integrate an energy efficient scheduling
algorithm. In addition, most of commercial RTOSs do not meet
the design requirements of the scheduling algorithms to be
implemented.

There are numerous free open source RTOSs [16]. Examples
include eCos, EROS, FreeRTOS, Phoenix-RTOS, RTLinux, SHaRK,
and TimeSys Linux. A scheduling algorithm can potentially be
integrated into any of these open source RTOSs since they can be
accessed at no cost. However, most of these RTOSs do not support
multi-core scheduling and DVS, and few well-documented refer-
ences are available, which makes the implementation difficult
and time-consuming.

The Linux Fedora operating system, one of the most widely used
operating systems, was chosen as the operating system for Endura
TP945GM motherboard. Linux was initially developed by Linus
Fig. 1. Connections of power supply unit (PSU) to mini-ITX motherboard. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 1
Twenty-pin ATX connector and associated components on mini-ITX motherboard.

Twenty-pin ATX

connector

Components on motherboard

þ12 V Fans and expansion slots

þ5 V Voltage regulators for CPU;

chipsets and memory; internal logic

þ3.3 V Voltage regulators for chipset interfaces and

processor interface; firmware hub (FWH);

clock generator; system monitor
Torvalds in 1991 as an operating system for IBM-compatible
personal computers based on the Intel 80386 microprocessor [17].
One of the appealing benefits to Linux is that it is not a commercial
operating system and is compatible with numerous hardware and
software platforms. Its source code under the GNU GPL is open and
available to anyone to study, and hence, plentiful materials are
available for references [17]. Instead of Linux Fedora Core 6 or 7,
Linux Fedora 8 was selected because it supports dynamic voltage
scaling.

The scheduling of Linux is based on the time sharing technique
where several tasks run in time-multiplexing. Time sharing relies
on timer interrupts and is thus transparent to tasks. No additional
code needs to be inserted in the programs to ensure CPU time
sharing. Linux tasks are priority-based and preemptive. A lower
priority task can be preempted by a higher priority task when
executing either in kernel or in user mode.

Linux Fedora 8 supports two fixed priority and preemptive
real-time scheduling policies: first-in-first-out (FIFO) and round
robin (RR) [17]. FIFO assigns CPU to the task with the highest
priority. Tasks with the same priorities are arranged to execute in
the order of first-in-first-out. The highest priority task continues
to use CPU without being preempted until it finishes execution.
The round-robin (RR) policy is the application of round robin
algorithm in the scheduling domain. Under RR scheduling policy,
each real-time task is assigned a fixed time quantum. The
execution of a task is either preempted by a higher priority task
or suspended when the time quantum is exhausted, whichever
occurs first. A suspended task is placed at the end of the same
active list of the CPU run queue. The CPU run queue is supposed
to have multiple active lists and tasks in an active list is supposed
to locate at the same priority level. This policy ensures a fair
assignment of CPU time to all RR-based real-time tasks that have
the same priority.

Fig. 2 illustrates the operations of FIFO and RR real-time
scheduling policies. Ready tasks in instruction memory are picked
and put in the run queue of CPU. Tasks in the run queue are
organized according to their priority level and the order in which
they are put in the run queue if they have the same priority level.
Let tp,q denote the qth placed task at the priority level p. Two task
lists are arranged in the run queue, as is shown in Fig. 2. Tasks
having priority level i are placed in one linked list while tasks
having priority level j are put in another linked list. Task ti,1 and
task tj,1 are at heads of the two linked lists and task ti,m and task
tj,n are at the tails of the two linked lists, respectively. Assume
tasks in the first list (ti,1 through ti,m) are scheduled using FIFO,
tasks in the second list (ti,1 through tj,n) are scheduled using RR,
and the assigned time quantum of tasks in the RR-list is smaller
than task execution times. Tasks ti,1 through ti,m in the FIFO-list
Fig. 2. Operations of FIFO and round robin (RR) scheduling policies.
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finish their execution in turn without being preempted by one
another. On the contrary, the execution of a task in the RR-list will
be terminated and the task will be appended to the tail of the list
at the instant when its time quantum expires. For example, task
tj,1 will start its execution after all tasks in the FIFO-list finish
their execution since FIFO-list is located at a higher priority level
than RR-list. After task tj,1 in RR-list exhausts its time quantum, it
is added to the end of the list. Task tj,2 becomes the head of the
list and starts to execute.

The FIFO policy was selected as the basis for implementing
RMS-based scheduling algorithms. RMS, an optimal fixed priority
scheduling algorithm in which a task with a shorter period is
given a higher priority than a task with a longer period [18,14], is
used to assign priorities to tasks with different periods and Linux
FIFO policy is used to break ties when tasks have the same
periods. The Linux FIFO policy provides a simple yet efficient
approach to implementing fixed priority preemptive scheduling
algorithms.
Fig. 3. The function to derive the worst case execution time and period of a task.
3. Implementation of RMS based task allocation and
scheduling algorithms

RMS-based task allocation and scheduling algorithms for hard
real-time systems were implemented by combining Linux FIFO
scheduling policy and POSIX threads API. The implementation
consists of three major steps: task generation, task allocation, and
task scheduling. In the first step, Dhrystone-based independent
and periodic tasks were generated and task characteristics were
derived. In the second step, the generated tasks were assigned to
processors according to task allocation heuristics such as first fit
decreasing (FFD), worst fit decreasing (WFD), and modified worst
fit decreasing (MWFD) [8]. In the task scheduling step, the tasks
allocated to individual processors are scheduled using uniproces-
sor scheduling algorithms such as A-DVS [7] and JFTA [6].
Specifically, a priority mapping was performed to synchronize
the opposite priority conventions of POSIX threads API and Linux
Fedora 8 scheduler, and a voltage schedule for the allocated tasks
was derived by calling the uniprocessor scheduling algorithms.
The allocated tasks were then synchronized to release their first
instances at the critical instant and start to execute on the
constructed platform.

3.1. Task set generation and task characteristics derivation

A task set with ten tasks was used to facilitate the description
of the implementation process. Task utilizations of the tasks in
the task set were generated based on the beta-distribution of
probability and were limited to less than ln2, the asymptotic
bound of RMS. The standard deviation of utilizations was also
limited to a maximum value, which is a function of the mean of
task utilizations [8]. Ten tasks the execution times of which range
from 1 to 1000 ms were generated using the Dhrystone bench-
mark program, which is described in details in the next para-
graph. Task periods were derived using the generated task
utilizations and measured task execution times on the Endura
TP945GM motherboard.

Dhrystone, a synthetic computing benchmark program devel-
oped to be representative of system programming, was selected
to generate tasks in the task set. Dhrystone was written in C
language code, has small size, and is portable to a large number of
platforms and processor architectures. These characteristics make
Dhrystone a popular benchmark in embedded applications due to
its small memory requirements.

The output of Dhrystone benchmark program is the number of
iterations of the Dhrystone main code in unit time, which is
derived by dividing a predefined number of iterations of the
Dhrystone main code by the corresponding execution time. The
value of the predefined number of iterations depends on proces-
sor architecture, operating system, and compiler attributes
[19,20]. Dhrystone was modified in the implementation to gen-
erate tasks in the task set. The modified Dhrystone takes as its
input the number of iterations of the Dhrystone main code, which
is denoted by loops. The corresponding task is therefore repre-
sented as Dhrystone(loops). One loops value corresponds to one
task in the task set. The execution time of the modified Dhrystone
is measured using the GNU C library function gettimeofday, hence,
measurements have time resolution of 1 ms. This time resolution
is fine enough for task execution times in the magnitude of
milliseconds. Measurement of the execution time of each task in
a task set was performed 10,000 times on the Endura TP945GM
motherboard to account for the statistical anomalies and impact
of the practical platform on task execution.

Ten loops values ranging from 1000 to 950,000 were generated
with uniform distribution of probability such that each corre-
sponding task has the same probability of being short (1–10 ms),
medium (10–100 ms), and long (100–1000 ms). The loops value of
1000 corresponds to the task execution time of 1 ms and the
value of 950,000 corresponds to the task execution time of
1000 ms on the motherboard. This approach assumes that each
loop of the modified Dhrystone takes fixed execution time.

Fig. 3 shows the function WCET_period_func to obtain the
worse case execution times and corresponding periods of tasks
in the task set. Let exe_time denote the execution time of task
taskID, array component loops_array[taskID] denote the loops

counterpart of the task taskID, and TaskNum denote the number
of tasks in the task set. Line 3 of the function derives the
execution time of a task by running the task on the practical
platform and measuring the time elapsed. Since the execution
time of a task varies on the practical hardware and software
platform, the execution time obtained in line 3 is adjusted by an
experimental factor to derive the worst case execution time
(WCET) and corresponding period of the task in a way such that
a new task instance will not be released before its predecessor
finishes execution. The adjustment factor is a real number greater
than 1.0. The 10,000 executions of each generated task on the
platform showed that 1.1 is an acceptable adjustment factor since
the actual execution times of tasks are close enough to but less
than their worst case execution time. This approach does not
provides a safe upper bound on the worst case execution time,
hence it is only suitable for applications where a safe upper bound is
not required. Line 4 adjusts task execution time by the experimental
factor 1.1 to obtain the WCET of the task. After the WCET of a task is
derived and stored to the global array WCET in line 5, the period of
the task is derived as the ratio of the corresponding WCET stored in
WCET to the utilization stored in util, as shown in line 6. The hyper-
period of a task set can be obtained by calculating the least common
multiple of all task periods.



void Task_Allocation ( )

1. pid_t pid;

2. pid = fork ( );

3. if pid == -1 then

4.     print" Can’t fork, error happens"

5.     return

6. end if

7. if pid == 0 then

8.     Using Linux taskset utility to set process affnity to core 1;

T. Wei et al. / Microelectronics Journal 42 (2011) 1176–11851180
Instances of a task are released per constant, periodic interval
of time and each instance corresponds to an iteration of the
execution of the modified Dhrystone. In the implementation, the
release of a task instance was mimicked by calling the modified
Dhrystone every interval of the task period. The slack time of a
task is the difference between the period and actual execution
time of the task. A task is put to sleep during its slack time
interval. Waiting tasks can use the processor even if they have
lower priorities than the sleeping task. The example code of a task
is omitted due to space limitation.
9.     Create thread 1 using p thread function p thread_create;

10.     Create thread 2 using p thread function p thread_create;

11.      Synchronize the created threads;

12. end if

13. if pid > 0 then

14.    Using Linux taskset utility to set process affinity to core 2;

15.    Create thread 3 using p thread function p thread_create;

16.    Create thread 4 using p thread function p thread_create;

17.    Synchronize the created threads;

18. end if

19. return

Fig. 4. The function to assign tasks to processors.
3.2. Allocation of the generated tasks to processors

The relationship of a process, thread, and task is first clarified
in this section. A process is the execution of one or more tasks,
and a thread is a light weight process corresponding to the
execution of exactly one task. A process can contain multiple
threads. In user space of Linux Fedora 8, processes can be mapped
to different CPUs or cores while threads of a process can only
execute on the CPU or core where the process is mapped.

The task-to-processor allocation strategies can be broadly
classified into two categories: global allocation and partitioning
allocation. Under global allocation, a task instance can execute on
one processor and migrate to other processors if required. On the
other hand, partitioning allocation assigns tasks to processors
permanently, and migration among processors is prohibited. The
global allocation strategy suffers from its large overhead due to
task migration among processors and hence has an adverse
impact on the feasibility performance of optimal uniprocessor
scheduling algorithms such as RMS and EDF. Therefore, RMS-
based hard real-time systems usually use partitioning allocation
schemes such as FFD, WFD, and MWFD [8] to assign tasks to
processors.

The default scheduler of the Linux Fedora 8, however, uses
global partitioning. It attempts to keep tasks on the same
processor and balances the workload by migrating tasks among
processors if the workload of one processor is significantly lower
than the workload of another. The taskset utility of Linux Fedora
8 was used in the implementation to override the default
scheduler of Linux Fedora 8 and set the CPU affinity for processes
of tasks. The CPU affinity is a scheduler property that bonds a
process to a given processor on the symmetric multiprocessor
system. As a result, the Linux scheduler will follow the CPU
affinity of the taskset utility and the process of a task will not
migrate among processors.

The partitioning allocation-based task-to-processor assign-
ment for an n-processor system is achieved by creating n

processes in the user space, performing a one-to-one mapping
between the n processes and the n CPUs or cores, and creating in
each process the threads of tasks that will be assigned to the
associated CPU or core. First, processes are created using fork, a
Linux command that creates a child process differing from the
parent process only in process ID. A parent process and its child
are inherently synchronous in the sense that the threads of tasks
in the parent process start the execution at the same instant as
the threads of tasks in the child process. In other words, threads
from both the parent and child process start to execute at the
instant after the fork command is called. Second, a running
process is bound to a specific CPU or core by calling the taskset,
a utility that utilizes a bitmask to specify the CPU or core where
the process is mapped. For example, the bitmask 0�0001
corresponds to processor 0 and 0�0003 represents processor
0 and 1. Finally, the threads of tasks in a process are created using
the pthread function pthreadcreate, which will be discussed in
details in Section 3.3.
The Task Allocation function shown in Fig. 4 illustrates the
allocation of four tasks to a core duo processor. Task 1 and task 2
are supposed to execute on core 1 while task 3 and 4 are specified
to run on core 2. The line 1 of the function defines the variable pid

of the type pid_t. In line 2, the fork is called and its return value is
assigned to the variable pid. If pid equals to �1, the call to the fork
fails and no child process is created (lines 3–6). If pid equals to 0,
the call to the fork is successful and the current process is the
child (lines 7–12). If the call to the fork returns a positive number,
the current process is the parent and the returned positive
number is the process ID of the newly created child (lines 13–18).

The child process is bound to core 1 of the core duo processor
in line 8. The two threads of task 1 and task 2 are created in lines
9 and 10 using pthread function pthreadcreat, and are synchro-
nized in line 11 so that all tasks allocated to core 1 start their
executions simultaneously. The similar activity of the parent
process is demonstrated in lines 13–17. The synchronization of
threads of a process is discussed in Section 3.3.

3.3. Scheduling of the allocated tasks on processors

The RMS-based scheduling algorithm performs priority assign-
ment according to periods of tasks in the task set. A task with
shorter period has higher priority than a task with longer period.
This priority assignment scheme was implemented on the Linux
Fedora 8 platform by combining the FIFO policy of Linux and the
priority convention of POSIX threads API.

The Linux FIFO real-time scheduler favors a higher priority
task over a lower priority one for tasks in a task set with given
priorities. Ties are broken according to the first-in-first-out policy.
Real-time priorities supported by Linux Fedora 8 scheduler rang
from 1 to 99, where 1 represents the highest real-time priority
and 99 denotes the lowest real-time priority, as is shown in Fig. 2.
Conventional tasks have lower priorities than any real-time tasks.
This scheduling property implicitly minimizes interference over-
heads from the execution of conventional tasks on the platform
since no real-time tasks can be preempted by a conventional task.
In addition, Linux Fedora 8 utilizes an O(1) scheduler. The time
the scheduler takes to find a task to execute does not depend on
the varying number of tasks but on the fixed number of priorities



Fig. 5. DAQ system and current probes for energy measurement.
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supported by the scheduler. In other words, the scheduling
overhead of Linux Fedora 8 scheduler is fixed regardless of the
number of ready tasks. Therefore, the impact of the scheduler on
the RMS-based scheduling algorithm is determined and can be
accounted for by the variations in task execution times.

The POSIX threads API is a POSIX standard for threads, which
defines an API for creating and manipulating threads [21]. The
POSIX threads API supports two real-time scheduling policies
(FIFO and RR) and 99 priorities (1–99). Unlike the Linux Fedora
8 scheduler, in the POSIX threads API, a task with a large priority
value has higher priority than a task with a small priority value.
For example, priority value 99 stands for the highest priority
and priority value 1 refers to the lowest priority. Therefore, a
priority mapping was performed in the implementation in such a
way that a task with shorter period is assigned a higher prio-
rity value and a task with longer period is assigned a lower
priority value.

POSIX threads API was used in the implementation to manage
periodic tasks in the task set. One of its roles is to synchronize
periodic tasks in the task set. In the practical implementation,
once a real-time task is created and if there are no higher priority
tasks in the run queue of CPU, the task will be executed
immediately. This may lead to a situation where a task created
first is executed first regardless of its relatively lower priority
than a task that is created later. Since the CPU runs fast and there
exists a time delay between creation of two tasks, the first task
may finish its execution before the second task is created. There-
fore, periodic tasks in the task set were synchronized to release
their first instances simultaneously in the implementation. The
proposed synchronization strategy consists of three steps:
(1) POSIX threads API routines are called to create a condition
initialized to false, on which all tasks in a task set have to wait,
(2) POSIX threads API routines are called to instantiate tasks and
assign priorities to tasks, and (3) the condition is set to true and
all tasks in the task set become ready for execution. Synchronized
tasks in a task set compete for CPU and the task having the
highest priority executes first.

The RMS-based scheduling algorithm is intended for hard real-
time systems while the Linux Fedora 8 only supports a soft real-
time scheduler, in which tasks are allowed to miss their deadlines
without necessarily causing system failure. In this implementa-
tion the hard real-time scheduling property was achieved on top
of the Linux Fedora 8 soft real-time scheduler by comparing task
deadlines with current time and exiting task executions if task
deadlines are missed. The time instant denoting the critical
instant of tasks in a task set is stamped before the synchroniza-
tion condition is set true. The time instant is utilized as base time
to derive absolute deadlines of tasks. A comparison is performed
at the end of the execution of a task instance to determine if
current time exceeds the absolute deadline of the task instance. A
task is considered unschedulable if one of its instances can not
meet its absolute deadline, and then the task set containing the
task is deemed infeasible.
Fig. 6. The LabView graphical program to derive energy consumption of CPU.
4. Construction of energy measurement platform

Since the ATX 4-pin connector exclusively provides 12 V
voltage to the VRM of CPU and the ATX 20-pin connector provides
12, 5, and 3.3 V voltages to components on system board, the
energy consumption of CPU and system board can be approxi-
mated by the energy delivered from ATX power supply connec-
tors, which can be derived by measuring the current flowing
through ATX connectors. Considering the fact that a VRM can
achieve energy efficiency of up to 95% [22] and difficulties to
directly measure energy consumption of an onboard device, this
strategy for energy estimation can be used to sketch energy
consumption of CPU and system board.

Measurement of energy consumption is accomplished by
using a DAQ system and Tektronix A622 AC/DC current probe.
The DAQ system is composed of an NI PCI-6040E DAQ, NI BNC-
2110 connector block, and a host computer with LabView, as is
shown in Fig. 5.

The Tektronix A622 AC/DC current probe uses a Hall-effect
current sensor to measure the strength of the magnetic field of
current flow and then transform it to a voltage output. It can
measure AC/DC currents from 50 mA to 70 A over a frequency
range of DC to 100 kHz. It provides 10 or 100 mV output for each
ampere measured. The 100 mV scale is used in the experiment to
improve measurement accuracy. As is shown in Fig. 5, the probe
acquires the currents flowing through ATX power supply wires
and feeds its voltage outputs to the NI PCI-6040E DAQ device via a
NI BNC 2110 connector block.

The NI PCI-6040E multifunction DAQ is a fast and accurate
multiplexing data acquisition device ideal for continuous high-
speed data logging. It includes connectivity for 16 analog inputs,
two analog outputs, eight digital input/output lines, and two
counter/timer signals. Four of the analog inputs were used in the
experiments to accept voltage outputs from current probes
attached to PSU power wires. The combination of the NI PCI-
6040E DAQ and the LabView real-time module constitutes the
basic framework of the measurement platform. LabView program
is designed in this experiment to access the NI PCI-6040E DAQ
device to acquire voltage data, which are then transformed to the
corresponding currents flowing through ATX connector wires. The
input power to CPU and the system board are derived using the
ATX connector voltage values and the measured current values.

Fig. 6 shows the graphical LabView program to derive the
energy consumption of CPU. The analog voltage acquired by the
DAQ assistant from the current probe, which is attached to
the four-pin ATX connector power wires dedicated to CPU, is
fed to the A/D converter and converted to a digital voltage value.
Since current probes are set at 100 mV output scale for each
ampere measured in the experiment and the supply voltage of
CPU from the four-pin ATX connector is 12 V, the power delivered
to CPU is expressed as 12 V�10�OutputA/D, where OutputA/D

denotes the output of A/D converter. The energy delivered to CPU
is the accumulated power in the duration of task executions.



Table 2
Energy consumptions of CPU and system board under JFTA and A-DVS scheduling

schemes.

K JFTA

EJ (J)

A-DVS

EA (J)

(EJ�EA)/EJ

EJA (%)

CPU 0 312.1 312.1 0

1 396.7 318.5 19.7

2 408.4 318.5 22.0

3 418.1 325.6 22.1

4 436.2 330.7 24.2
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The real-time energy value is displayed by an indicator, passed to
the next iteration through a local variable called shift register, and
retrieved at another shift register on the main loop for accumula-
tion. The iteration of the loop is controlled by task execution time.
The energy consumption of the system board can be measured
using the similar approach. Components on the system board
such as the system fans, CPU fan, USB controllers, audio device,
LAN driver, PCI express ports, and hard drive are disabled during
system board energy measurement since they are not related to
system scheduler.
5 NF 341.2 –

System board 0 489.1 489.1 0

1 488.5 490.4 �0.38

2 488.7 490.8 �0.45

3 489.1 491.4 �0.46

4 491.6 490.4 0.25

5 NF 491.0 –

Table 3
Overhead in energy and execution time of JFTA and A-DVS when scheduling

Dhrystone-based task set at different CPU speed.

CPU speed

(GHz)

JFTA A-DVS

Energy ðmJÞ Execution

time ðmsÞ

Energy ðmJÞ Execution

time ðmsÞ

1.00 20.7 3497 6.31 1663

1.33 23.0 2421 7.02 1132

1.67 25.4 1366 7.77 864

2.00 29.7 1013 9.02 699
5. Experimental results

Extensive experiments were performed on the multi-core
embedded board to validate the feasibility and efficiency of
energy aware task allocation and scheduling schemes for hard
real-time systems. The multi-core embedded board is configur-
able such that one of the two cores of the Intel T2500 can be
disabled and the board could be used for both uniprocessor
systems and multi-core systems. An energy measurement plat-
form was set up in the experiment to measure energy consump-
tions of the generated task set on the cores and system board,
respectively. The energy measurement was performed under
different allocation and scheduling schemes.

5.1. Results for uniprocessor systems

One core of the Core Duo processor Intel T2500 was disabled
for uniprocessor implementation. Two offline energy efficient task
scheduling algorithms for uniprocessor systems, JFTA [6] and
A-DVS [7], were implemented on the test bed. Both JFTA and
A-DVS are DVS-based application level task scheduling algorithms
where all tasks run at the same processor speed. JFTA exhaus-
tively examines all processor frequency levels to determine the
lowest frequency that satisfies timing constraints. Time complex-
ity of the algorithm is O(n2RL), where n is the number of periodic
tasks in a task set, R is the ratio of the largest task period to the
smallest task period, and L is the number of frequency levels
supported by the processor. Unlike the JFTA, the A-DVS algorithm
starts feasibility analysis from the lowest processor speed and the
first schedule found feasible is proved to be energy optimum. It
exploits a binary search-based approach to find the lowest
possible processor speed at which the task schedule is feasible.
The time complexity of the A-DVS algorithm is O(n2R log2

L).
The A-DVS algorithm utilises the time-demand-based

approach in feasibility analysis, which enables the adaptation of
the A-DVS algorithm to the runtime behavior of task execution.
The dynamic component of the A-DVS algorithm, referred to as
D-ADVS, is also implemented in this section. Both the JFTA and
the A-DVS are fault-tolerance scheduling algorithms. The effect of
fault is emulated in the implementation by incorporating fault
recovery overheads into task execution times to facilitate energy
measurement. A more detailed description of the JFTA and the
A-DVS algorithms can be found in [6,7], respectively.

The 10 generated Dhrystone-based tasks were scheduled to
execute on the test bed using the JFTA and A-DVS, respectively.
Table 2 shows the energy consumptions of the core and system
board, respectively. K denotes the maximum number of faults the
system is designed to tolerate and EJA ¼ (EJ�EA)/EJ�100%, where
EJ and EA represent energy consumptions of the task set under
JFTA and A-DVS, respectively. NF denotes that the tasks in the task
set can not be feasibly scheduled.

Table 2 shows that as compared to A-DVS, JFTA consumes
about 20% more core energy in the presence of fault occurrences
and consumes the same core energy in the absence of fault
occurrences. This is because JFTA is an offline scheduling algo-
rithm that considers the worst case fault occurrences in the
design phase while A-DVS is an efficient offline scheme that can
utilize uncertainties in fault occurrences at runtime to enhance
energy savings.

The energy consumptions of the system board excluding the
processor are close for the two scheduling algorithms under
different numbers of fault occurrences. For example, the differ-
ence in the energy consumption of the system board between the
JFTA and A-DVS is less than 0.5% with the number of faults
ranging from 0 to 5, as is shown in Table 2. Furthermore, the
energy consumption of the system board when it is idle is 479.8 J,
which is about 10 J less as compared to the energy consumption
of the system board under the load of the Dhrystone-based
task set.

There are three possible reasons for the relative stableness in the
energy consumption of the system board. First, the Dhrystone is a
CPU-intensive benchmark program and it does not intensively
exercise the system board, especially the memory system to store
and load data. Second, the JFTA and A-DVS scheduling algorithms
are also CPU-intensive and their impact on the system board energy
consumption is small. Finally, the total size of the instructions of the
schedulers and the Dhrystone-based tasks in the form of an
executable file is about 20 K. This file could be readily fit in the
2 MB L2 cache of the Intel T2500 processor, which reduces the
memory access overheads to fetch instructions.

Table 3 shows the overhead in energy consumption and
execution time of JFTA and A-DVS to schedule at different CPU
speed the 10 Dhrystone-based tasks. The energy consumption of
JFTA and A-DVS is in the range of 20–30 mJ and 6–10 mJ,
respectively, and the execution time of JFTA and A-DVS is in the
range of 100023500 ms and 60021700 ms, respectively. The
execution time of A-DVS is about 1/2 of that of JFTA, which
is consistent with the time complexity of the two algorithms.
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The energy consumption of A-DVS is about 1/3 of that of JFTA.
This is primarily due to the lower complexity of A-DVS when
compared to JFTA.

To further compare the scheduling overhead of the two
algorithms, several task sets with different numbers of tasks are
generated and scheduled using JFTA and A-DVS. Table 4 shows
the scheduling overhead of the two algorithms at the processor
speed of 1 GHz. Overall, JFTA incurs larger overhead when
compared to A-DVS. The scheduling overheads of the two algo-
rithms grow with the increase in the number of tasks to be
scheduled and come close to each other with the total task
utilizations approaching the processor utilization bound. For
example, the overhead of JFTA to schedule 10 tasks is about two
times the overhead of A-DVS to schedule the 10 tasks while both
the algorithms take about 8000 ms to schedule 70 tasks. This is
because the time complexity of the two algorithms is propor-
tional to n2, where n is the number of tasks to be scheduled, and
JFTA incurs the worst case scheduling overhead due to its
exhaustive search property.

D-ADVS and the D-TDVS [7] are the dynamic components of
the A-DVS and T-DVS algorithm, respectively. The scheduling
overheads of the D-ADVS and the D-TDVS are negligible when
compared to task execution times. For example, it is shown in
Table 4 that the runtime overhead of the D-ADVS is 2 ms for 10
tasks and 26 ms for 70 tasks. The runtime overhead of the D-TDVS
is about 7 ms, which is independent of the number of tasks and
remains the same for task set with varying sizes.

Since Intel does not provide power characteristics of Core Duo
processors such as T2500 at discrete frequency or voltage levels,
the simulation for energy consumption can not be performed for
Dhrystone-based task set; thus, the comparison between actual
energy measurements and simulation results for Dhrystone-
based task set was not performed. However, the trend of the
experimental results for Dhrystone-based task set conforms to
the trend of the simulation results for computer numerical
control (CNC) and inertial navigation system (INS) task sets [7]
in feasibility performance and energy consumption. In other
words, the testbed can be utilized to accurately benchmark
various task scheduling algorithms on weather tasks in a given
task set can finish their execution on time and energy consumed
by schedulable tasks.
5.2. Results for multi-core systems

Task allocation heuristics FFD, WFD, and MWFD [8], and the
optimistic fault-tolerance task allocation and scheduling scheme
OFT-MWFD [8], were implemented on the multi-core embedded
board and validated in terms of the feasibility performance and
energy consumption. Both FFD and WFD assume that only one
processor is open for task assignment at the beginning. For a
given task, the FFD heuristic selects the first processor that can
Table 4
Scheduling overhead for varying task set sizes.

Number of tasks Time overhead ðmsÞ

JFTA A-DVS D-ADVS D-TDVS

10 607 319 4 7

20 1141 634 6 7

30 2080 1300 8 7

40 3473 2481 11 7

50 4937 4114 15 7

60 6031 5483 22 7

70 8061 7971 26 7

80 NF NF NF NF
feasibly schedule the task while the WFD heuristic selects the
processor with the maximum remaining capacity. MWFD
assumes all processors are open at the beginning. Instead of the
processor with the maximum remaining capacity, MWFD selects
the processor with the minimum workload for task assignment.
Allocated tasks are scheduled on individual processors using the
exact characterization of the rate monotonic scheduling algo-
rithm, referred to as ECRMA [14].

Ten task sets were generated to validate the feasibility perfor-
mance and energy consumption of the task allocation and schedul-
ing schemes under different processor workloads. Each of the task
sets contains 20 Dhrystone-based independent and periodic tasks
with varying characteristics. These task sets were run on the
presented real-life testbed, and Fig. 7 shows the percentage of the
feasible task sets when the FFD and MWFD allocation schemes are
used in conjunction with the ECRMA-based scheduling scheme,
where s=smax denotes the ratio of the standard deviation of the
utilizations to a predefined maximum value and Utot/n denotes
the average utilizations on each core. Similarly, Fig. 8 shows the
percentage of the feasible task sets under a simulated environment,
which was described in [8]. With regard to the feasibility perfor-
mance of the FFD and MWFD allocation schemes, the trend on the
real-life testbed given in Fig. 7 was observed to be consistent with
the trend under the simulated environment given in Fig. 8. That is,
the feasibility performance of FFD and MWFD is comparable under
the varying Utot/n, FFD consistently outperforms MWFD when
s=smax is large (e.g., s=smax¼0.8), MWFD consistently outperforms
FFD when s=smax is small (e.g., s=smax ¼ 0:2), and MWFD is more
resilient to the variations in s=smax (i.e., its performance does not
significantly change with the variations in s=smax). However, the
scheduling capacity of the cores decreases by about 0.1 when
compared to the simulation results given in Fig. 8. For example,
both FFD and MWFD can feasibly schedule all the task sets with
s=smax ¼ 0:2 when Utot=no0:75 and all the task sets with
s=smax ¼ 0:8 when Utot=no0:79, while the corresponding Utot/n
reported in the simulation results is about 0.85 and 0.89, respec-
tively. This is because the overheads incurred in the implementation
degrade the feasibility performance of the FFD and MWFD.

The implementation overheads include the cost incurred when
task instances are created and the context switching overhead
incurred when the execution of a task instance is preempted. The
Fig. 7. On the presented real-life testbed with a Core Duo processor, the feasibility

performance of FFD and MWFD allocation schemes when used in conjunction with

the ECRMA-based scheduling scheme.



Table 5
On the real-life testbed of a Core Duo processor, the energy consumption of FFD,

WFD, and MWFD allocation schemes when used in conjunction with ECRMA-

based A-DVS scheduling algorithm (energy unit in J).

Utot (n) FFD (EF) WFD (EW) MWFD (EM) EFW (%) EFM (%) EWM (%)

Cores 0.31 173.8 173.8 60.1 0 65.4 65.4

0.50 276.3 227.9 170.3 17.5 38.4 25.3

0.63 326.3 280.6 248.5 13.8 23.8 11.4

Board 0.31 452.9 452.9 215.0 0 52.5 52.5

0.50 488.7 447.3 317.5 8.5 35.0 29.0

0.63 492.5 453.9 407.8 7.8 17.2 10.2

Fig. 9. Under the simulated environment of a two-core processor and 20 tasks [8],

the energy consumption of the FFD, WFD, and MWFD allocation schemes when

used in conjunction with the ECRMA-based scheduling scheme.

Fig. 8. Under the simulated environment of a two-core processor and 20 tasks [8],

the feasibility performance of FFD and MWFD allocation schemes when used in

conjunction with the ECRMA-based scheduling scheme.
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instances of a task are released periodically. Assuming a released
instance of the task finishes its execution without being pre-
empted, the processor is put to sleep when the task instance
finishes its execution so that other tasks can utilize the processor
during the slack of the task instance. This is achieved by calling
the usleep function. The invocation overhead of the usleep func-
tion is in the order of microseconds. In addition, task preemption
may occur during the execution of the current task. Preemption
may also occur during the slack of the current task where
conventional background tasks or other real-time tasks execute.
Consequently, context switching overhead is incurred as a result
of the task preemption and increases with the growth in the
number of the preemption.

Although the generated real-time tasks are assigned to cores
using the task allocation heuristic presented in [8], the conven-
tional non-real-time background processes are allocated to cores
by the default Linux scheduler. The default Linux scheduler
performs load-balancing every clock tick and ensures that the
run queues of different cores contain approximately the same
number of conventional processes. This allocation strategy may
lead to a scenario where some cores contain significantly longer
conventional processes than other cores even though the number
of conventional processes on each core is the same. As a result,
the cores containing the longer conventional processes are rela-
tively busier than the cores containing the shorter conventional
processes. Since a long process is more likely to be preempted by
a real-time task, the cores containing the longer conventional
processes possibly incur more preemption overheads. This is
consistent with the observation in the experiment that the
preemption overheads are different on the two cores although
real-time tasks are balanced between the two cores.

Both the context switching overhead and the usleep invocation
overhead are deterministic for a real-time task. Since a task
preempts at most one task [23], the incurred preemption cost of
the task is upper-bounded by the overhead from one context
switching. In addition, a task instance incurs overhead from
exactly one usleep invocation. These overheads are not taken into
account in the feasibility analysis of both simulation and imple-
mentation while are essentially incorporated into task execution
time in actual implementation. This discrepancy leads to a
plausible degradation in the core scheduling capacity.

Table 5 shows the energy consumption of a task set under FFD,
WFD, and MWFD allocation schemes when used in conjunction
with ECRMA-based A-DVS scheduling algorithm. The energy
consumption was measured under the workload Utot/n¼0.31,
0.5, and 0.63, respectively, and averaged over 10 feasible task
sets with s=smax ¼ 0:8. EF, EW, and WM denotes the energy
consumption of FFD, WFD, and MWFD, respectively. Similarly,
EFW denotes (EF�EW)/EF�100%, EFM denotes (EF�EM)/EF�100%,
and EWM denotes (EW�EM)/EW�100%. Table 5 shows the energy
consumption of the cores and the system board. When the
average utilization on cores is low, for example, Utot/n¼0.31,
FFD and WFD consume approximately the same core energy
while the MWFD consumes about 65% less core energy. When
the average workload is medium, the energy consumptions of
FFD, WFD, and MWFD increase and the difference in their energy
consumption becomes large. For example, for Utot/n¼0.5, FFD
consumes about 17% more core energy than the WFD, and both
FFD and WFD consume 25% more core energy than the MWFD. As
the average workload increases, the energy consumptions of FFD,
WFD, and MWFD continue increasing but the differences in
energy consumptions reduce. For instance, for Utot/n¼0.63, the
core energy consumption of FFD is about 13% more than that of
the WFD and 23% more than that of the MWFD, and the core
energy consumption of WFD is about 11% more than that of the
MWFD. The energy consumption of a task set under FFD, WFD,
and MWFD schemes in the simulated environment is given in
Fig. 9. It can be seen in the figure that the trend shown in the
simulation results conforms well to the trend given in the actual
measurements.



T. Wei et al. / Microelectronics Journal 42 (2011) 1176–1185 1185
Table 5 also shows that the energy consumption of the system
board is roughly proportional to the length of the schedule. For
example, when Utot/n¼0.31, both FFD and WFD could feasibly
allocate and schedule the task set on one core, hence generate a
schedule with the same length. On the contrary, for Utot/n¼ 0.31,
MWFD balances the workload between two cores and the
resultant schedule is about 50% long when compared to that of
FFD and WFD. Consequently, the system board energy consump-
tion of FFD and WFD is about the same (452.9 J) and is about two
times the system board energy consumption of MWFD (215.0 J).
Overall, the system board energy consumption of FFD is larger
than that of WFD, which is in turn larger than that of MWFD. This
corresponds to the load-balancing property of the three schemes
that dictates the length of the resultant schedules.

In Table 5, the average utilizations on cores, Utot/n, do not
incorporate the context switching overhead and the usleep invo-
cation overhead. The relationship of FFD, WFD, and MWFD in the
core energy consumption conforms better to the simulation
results given in Fig. 9 when these overheads are considered. In
addition, the corresponding energy costs from task preemption
and usleep invocation are in fact included in the energy measure-
ments. The time overhead of usleep invocation can be estimated
by the overhead of usleep(0), which is in the order of micro-
seconds on the test bed. Hence, the corresponding energy cost of
the usleep invocation does not pose significant impact to the core
or system board energy that is in the order of Joules. Similarly, the
energy cost from task preemption was shown to be in the order of
micro-Joules [24–26] and hence could be negligible when the core
and the system board energy are investigated. In other words, the
energy costs from task preemption and usleep invocation do not
affect the relationship of FFD, WFD, and MWFD in the core energy
consumption, which was confirmed in the implementation results
shown in Table 5.
6. Conclusions

This paper presents practical experience in designing a hard
real-time multi-core testbed to benchmark various energy effi-
cient task allocation and scheduling schemes. The testbed was
built on the Endura TP945GM Mini-ITX motherboard that com-
prises Intel T2500 processor with DVS capability and on top of
Linux Fedora 8 that only supports soft real-time scheduling. The
independent and periodic tasks used to verify the design were
generated based on Dhrystone benchmark program. POSIX
threads API and Linux FIFO scheduling policy were utilized to
facilitate the design and a LabView-based DAQ system was set up
to measure the energy consumption of the CPU and system board.
A case study of task allocation and scheduling schemes was also
presented.

The key to the success of this implementation is to properly
select hardware and software platforms. Common platforms, such
as �86 hardware platform and open source Linux Fedora 8 soft-
ware platform, facilitate the implementation since free support
and well-documented information are available. This implemen-
tation experience provides guidelines to validate RMS-based
energy efficient scheduling algorithms and to benchmark energy
consumptions of the algorithms on a real-life multi-core
embedded systems.
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