
Cui XT, Wu KJ, Wei TQ et al. Worst-case finish time analysis for DAG-based applications in the presence of transient

faults. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 31(2): 267–283 Mar. 2016. DOI 10.1007/s11390-

016-1626-6

Worst-Case Finish Time Analysis for DAG-Based Applications in the

Presence of Transient Faults

Xiao-Tong Cui 1,2, Kai-Jie Wu 1,2,∗, Member, CCF, IEEE, Tong-Quan Wei 3,∗, Member, CCF, IEEE, and
Edwin Hsing-Mean Sha 1,2, Member, CCF, IEEE

1Key Laboratory of Dependable Service Computing in Cyber Physical Society, Chongqing University

Chongqing 400044, China
2College of Computer Science, Chongqing University, Chongqing 400044, China
3Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China

E-mail: {xiaotong.sd, kaijie}@gmail.com; tqwei@cs.ecnu.edu.cn; edwinsha@gmail.com

Received January 12, 2015; revised April 21, 2015.

Abstract Tasks in hard real-time systems are required to meet preset deadlines, even in the presence of transient faults,

and hence the analysis of worst-case finish time (WCFT) must consider the extra time incurred by re-executing tasks that

were faulty. Existing solutions can only estimate WCFT and usually result in significant under- or over-estimation. In this

work, we conclude that a sufficient and necessary condition of a task set experiencing its WCFT is that its critical task

incurs all expected transient faults. A method is presented to identify the critical task and WCFT in O(|V |+ |E|) where |V |

and |E| are the number of tasks and dependencies between tasks, respectively. This method finds its application in testing

the feasibility of directed acyclic graph (DAG) based task sets scheduled in a wide variety of fault-prone multi-processor

systems, where the processors could be either homogeneous or heterogeneous, DVS-capable or DVS-incapable, etc. The

common practices, which require the same time complexity as the proposed critical-task method, could either underestimate

the worst case by up to 25%, or overestimate by 13%. Based on the proposed critical-task method, a simulated-annealing

scheduling algorithm is developed to find the energy efficient fault-tolerant schedule for a given DAG task set. Experimental

results show that the proposed critical-task method wins over a common practice by up to 40% in terms of energy saving.

Keywords fault tolerance, worst-case analysis, simulated annealing, energy conservation, dynamic voltage scaling (DVS)

1 Introduction

Real-time embedded systems which are used for

mission-critical applications such as navigation sys-

tems, process control, and surveillance systems demand

a high level of fault tolerance. Typically, static task

scheduling mechanisms[1-3] are often used in real-time

systems, which are usually designed to tolerate up to a

specified number of transient faults in a given time in-

terval by reserving enough redundancy (including hard-

ware and/or time) to recover from fault(s). The upper

bound on the number of faults is derived from the rate

of faults under the designated operating conditions, i.e.,

the mean time to failure (MTTF) of hardware compo-

nents and the rate of single event upsets (SEU). Due to

the severe resource constraints of embedded systems,

optimizing redundancy overheads is of great impor-

tance. Among all the fault tolerance techniques, re-

execution-based fault tolerance schemes have received

broad attention due to their efficiency of resource usage

and easiness in system design.

Re-execution based schemes usually assume that

the transient faults that occur during the execution of

a task are detected by the concurrent error detection

Regular Paper

A preliminary version of the paper was published in the Proceedings of ASP-DAC 2014.

This work is partially supported by the National High Technology Research and Development 863 Program of China under Grant
Nos. 2015AA015304 and 2013AA013202, the National Natural Science Foundation of China under Grant No. 61472052, and Chongqing
Research Program under Grant No. cstc2014yykfB40007.

∗Corresponding Author

©2016 Springer Science +Business Media, LLC & Science Press, China

268 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

mechanisms (e.g., watchdogs) supported by the proces-

sor. Therefore, the focus is on determining and schedul-

ing the re-executions of the (faulty) tasks. The schemes

can be broadly classified into two categories — passive

and active. An active scheme replicates tasks on mul-

tiple processing units such that all copies are executed

(almost) simultaneously. If one of the replicas is found

faulty, its result is replaced by the result of another

replica. A passive scheme, on the other hand, executes

only the primary replica of a task. Secondary replicas

are executed only if the primary replica is found faulty.

Feasibility tests of both strategies need to estimate the

amount of slack that can be devoted to tolerating the

worst-case fault occurrences. Several strategies have

been developed for a variety of applications[4-8].

Recently, minimizing power and/or energy con-

sumption gains considerable attention for real-time

embedded systems since many of these systems are

severely energy-constrained. Even if passive re-

execution schemes are adopted for the sake of energy, it

is important to note that reserving more than necessary

time for passive replicas degrades the opportunities to

engage power management techniques such as dynamic

voltage scaling (DVS). Hence, the knowledge of the pre-

cise worst-case finish time of a task set in the presence of

faults is critical not only to testing feasibility but also to

minimizing energy consumption. Speaking of minimiz-

ing energy consumption, heterogeneous computing en-

vironment is very popular[9-11] since it provides benefit

for energy conservation. Compared with homogeneous

computing environments, different types of processors

with diverse performance and power cost are used for

optimizing energy cost in heterogeneous environments.

Hence it can be used for specific applications which are

energy-constrained.

Though feasibility analysis of fault-prone real-time

systems has been studied for several years, the majo-

rity of the attention has been paid to the task sets that

comprise only independent tasks. Ghosh et al. studied

the problem by assuming the intervals between any two

faults are no less than twice the longest task[12]. Burns

et al. continued the work by assuming a similar fault

model[13]. They extended the feasibility analysis given

in [14], by modifying the analysis of task response time

to include fault-induced additional processing require-

ments. Liberato et al. presented an efficient algorithm

with the time complexity of O(N2X), where N is the

number of tasks and X is the maximum number of

faults to be tolerated[15]. Their work was extended by

Aydin to allow multiple re-executions of a task to have

different execution time[16]. Chrobak et al. presented

several fast algorithms to determine the feasibility of a

task schedule based on several different fault models[17].

Thekkilakattil et al.[18] guaranteed “fault tolerance fea-

sibility” by resource augmentation, specifically through

processor speed-up.

None of these approaches[12-18], however, handles

the task sets that have inter-task dependencies and are

scheduled in multi-processor systems. For such task

sets, the classical processor demand analysis does not

work anymore. This is because processors could be idle

before all tasks are executed due to inter-task depen-

dencies. In [7], this is simply done by comparing all pos-

sible cases and choosing the worst one. Such straight-

forward approach does not scale well as the number of

cases grows rapidly while finding the worst-case finish

time is always the most important issue in real-time

multi-processor system design.

In this paper, we will present such a method that

tests the exact feasibility in O(|V |+ |E|) where |V | and

|E| are the number of tasks and dependencies between

tasks, respectively. Task sets of many real-time applica-

tions are usually defined using processing graphs, such

as directed acyclic graphs (DAGs)[19-20]. The method

finds its application in testing the feasibility of the

DAG task set scheduled on a wide variety of multi-

processor systems, where the processors could be either

homogeneous or heterogeneous, DVS-capable or DVS-

incapable, etc. The schedule of a DAG task set includes

the task-to-processor mapping, the task-to-task order

on each processor, and the task-to-speed assignment

of each task if its mapped processor supports DVS.

Experimental results show that the common practices

could either underestimate the worst case by up to 25%,

or overestimate by up to 13%. Based on this method, a

simulated-annealing scheduling algorithm is developed

to find the energy efficient fault-tolerant schedule for a

given DAG task set.

In summary, the contributions of this paper are as

follows.

1) We prove that for a schedule of a DAG task set,

there is at least one task such that the schedule will ex-

perience its worst-case finish time (WCFT) when this

task incurs all the expected transient faults. The task

is named as critical task. The critical-task theory gives

the sufficient and necessary condition of a schedule ex-

periencing its WCFT.

2) We develop an efficient feasibility test method

that identifies the critical task and the WCFT of a

schedule, and runs in O(|V |+|E|) where |V | and |E| are

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 269

the number of tasks and dependencies between tasks,

respectively. This is referred to as critical-task method.

It is important to note that unlike the existing solutions

that take the same time complexity but could result

in significant under- or over-estimation, the proposed

method finds the exact WCFT.

3) We propose, as an example application of the

critical-task method, a simulated annealing algorithm

to find the energy efficient fault-tolerant schedule for

a DAG task set scheduled on a heterogeneous DVS-

capable multi-processor system. The algorithm uses

the proposed critical-task method for feasibility test.

The rest of this paper is organized as follows. Sec-

tion 2 presents the system models. Section 3 presents

the critical-task theory and Section 4 presents the

critical-task method. Section 5 gives an example ap-

plication of the proposed critical-task method. It is an

SA-based algorithm where the critical-task method is

used for feasibility test. Section 6 shows the experi-

mental results, and Section 7 concludes this paper.

2 System Models

2.1 System Architecture

Consider a closely-coupled M -processor real-time

system

R = {p1, p2, ..., pM},

where M > 1. Although processors used in examples

are assumed to be identical, the analysis and conclu-

sions directly apply to heterogeneous systems compris-

ing of processors with different characteristics. Com-

munications in closely-coupled real-time systems are

carefully designed to guarantee invariable, minimum,

and known overheads. This is often achieved by us-

ing shared memory or special communication protocols,

such as ultra-fast serial links. In a multi-processor sys-

tem, inter-task communication overhead is determined

1) by the memory access latency and bandwidth in

the case of shared-memory architecture, or 2) by the

end-to-end link latency and bandwidth in the case of a

networked architecture. In this work, a common com-

munication model described below is used for the two

architectures.

• Communication between a pair of tasks scheduled

on the same processor incurs constant worst-case delay.

For simplicity, the example assumes the delay is 0.

• Communication between a pair of tasks scheduled

on different processors incurs constant worst-case delay.

• Communication between a task and the tasks

scheduled on different processors may experience dif-

ferent worst-case delays.

We believe the proposed communication delay

model is practical and accurate in the context of closely-

coupled systems. The underlying assumption is that

the worst-case outputs generated by the primary and

secondary replicas of a task, in terms of memory space

or communication traffic, are identical and hence the

inter-task communication delay between a given pair of

tasks remains independent of fault occurrences of tasks.

2.2 DAG Task Set

For a task set with data dependencies, the WCFT

of a task depends on 1) itself, 2) the tasks where it

receives inputs, and 3) the task scheduled immediately

before it on the same processor — its schedule predeces-

sor. Fig.1(a) shows a task set with data dependencies

(shown using arrows) and the worst-case execution time

(referred to as C) of each task. For simplicity, the exam-

ple assumes that the worst-case execution time equals

the re-execution time of task T when it is re-executed

upon a fault, i.e., CT = CrT , but this assumption is

not required for the analysis to hold. Fig.1(b) shows

a schedule that preserves the data dependencies and

assumes the worst-case intra- and inter-processor com-

munication delays between any tasks are 0 and 1 cycle,

respectively. Schedule predecessors are introduced after

the schedule is determined, and are shown using dot-

ted lines in Fig.1(c). For example, T3 is T6’s schedule

predecessor, and T6 cannot begin its execution until T3

finishes. It is not necessary to distinguish data and

schedule dependencies during the analysis of a given

schedule.

In our analysis, the task graph is converted to a

weighted directed acyclic graph (WDAG), G = (V,E),

where V is a set of vertices (tasks) and E is a set of

directed edges (schedule and data dependencies), as

shown in Fig.1(d). We hence use |V | and |E| to rep-

resent the number of tasks and dependencies between

tasks, respectively. In the following context, tasks and

dependencies are used interchangeably with vertices

and edges respectively. The edge from Ti to Tj has

a weight equal to the communication delay between Ti

and Tj , and is denoted as WE(Ti, Tj). A vertex T also

has a weight, denoted as Wv(T), equal to the CT of the

task if it incurs zero fault, or CT + xCrT if it incurs

x transient faults. All weights are non-negative. Two

dummy vertices, Source and Sink, are added into G.

270 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

C1=4, C2=10, C3=3
C4=4, C5=5, C6=3

Cycle

p1

p2

p3

(a)
(b)

(d)

1 2 3 4 5 6 7 8 9 10111213141516171819202122

T3 T1 T2

T1

T2 T5

T6T3

T4

T4 T6

T5

T3 T1 T2

Tsr

Tsk

T4 T6

T5

T3 T1 T2

T4 T6

T5

(c)

Idle

Idle

Fig.1. Example of task set and its schedule. (a) Data dependency. (b) Schedule of tasks. (c) Data/schedule dependency. (d) WDAG.

The Source vertex, denoted as Tsr in Fig.1(d), has an

edge to each vertex that has no incoming edge in the

original G; and the Sink vertex, denoted as Tsk, has an

edge from each vertex that has no outgoing edge in the

original G. The weights of both Source and Sink are 0

and the weights of the edges from Source and to Sink

are 0. A parent of vertex Ti is a vertex with an edge to

Ti. Vertex Ti is then a child of its parents.

A simple path from vertex Ti to vertex Tj, denoted

as Path(Ti, Tj), is a sequence of non-repeated vertices

and edges by which the start vertex Ti and the end

vertex Tj are connected together. Note that there may

be no path, one path, or more than one path between

a pair of vertices. Since the graph is directed and

acyclic, paths are directed as well. If Path(Ti, Tj) ex-

ists, Path(Tj , Ti) must not exist. An ancestor of vertex

Ti is a vertex that has at least one path to Ti. Vertex Ti

is then a descendant of its ancestors. A parent (child) of

a vertex is one of the ancestors (descendants) of the ver-

tex. The length of a path, denoted as |Path(Ti, Tj)|, is

the summation of the weights of the vertices and edges

along the path. The longest path from vertex Ti to ver-

tex Tj, denoted as LPath(Ti, Tj), is the path that has

the longest length among all paths from vertex Ti to

vertex Tj, and its length is denoted as |LPath(Ti, Tj)|.

There may be more than one longest path between a

pair of vertices, and all of them have the same length.

A critical path of vertex T , denoted as CPath(T), is

one of the longest paths from the Source Tsr to ver-

tex T . A vertex may have multiple critical paths, and

all of them have the same length, which is denoted

as |CPath(T)| and is equal to |LPath(Tsr, T)|. It is

easy to see that the finish time of task T is equal to

|CPath(T)|, and the start time of the task is equal to

|CPath(T)| − Wv(T), where Wv(T) = CT if T incurs

zero fault, or CT + xCrT if T incurs x faults. It is im-

portant to note that the length of a path, the longest

paths between two tasks, and the critical paths of a ver-

tex vary with the fault occurrences of involved vertices.

Hence, a different case of fault occurrences will result

in a different WDAG because the weights of involved

vertices have changed. Let Tc be the current task un-

der investigation, BCFTTc be its best-case finish time

when no fault occurs, and WCFTTc be its worst-case

finish time when all X faults have occurred during or

before its execution. In order to derive WCFTTc , two

useful task subsets are introduced:

• Parents set of Tc (PSTc): task subset comprising

the parents of Tc;

• Ancestors set of Tc (ASTc): task subset compris-

ing all ancestors of the current task Tc.

It is easy to see that only the fault occurrences of

the tasks in ASTc could affect the start time of Tc.

Obviously, PSTc ⊆ ASTc.

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 271

2.3 Frame-Based Systems for DAG Task Set

Presently there are two popular control paradigms

of task sets in real-time systems. One is the frame-

based system and the other is the event-triggered sys-

tem. In a frame-based system, all tasks are re-leased at

time 0 and should be finished by the end of the frame.

In an event-triggered system, each task is released ac-

cording to its own period and is executed based on its

order of priority. In general, while an event-triggered

system is preferred by non-safety-critical applications

due to its higher flexibility in resource allocation and

its higher efficiency in resource sharing, a frame-based

system is more preferred in safety-critical applications

due to its better hard real-time performance and easier

incorporation of fault tolerance[21-26]. This work inves-

tigates frame-based systems.

A scheduler first allocates the tasks to the proces-

sors according to some partitioning heuristics, and then

derives the order among tasks in each processor. Hence,

a task set is “scheduled” if the task-to-processor map-

ping and the task-to-task order in each processor are

determined. If the processors support DVS, the execu-

tion speed of each task is also assigned. Each task is

defined by its worst-case execution time C that denotes

the maximum CPU time required by the fault-free ex-

ecution of the task. C is the product of the worst-case

CPU cycles of the task and the clock period of its host

processor. Since the proposed analysis technique is ap-

plied after the schedule of tasks is determined, C of a

task is a constant. The duration of a frame is denoted

byD by which all tasks must finish their execution even

in the presence of faults[27]. A dependent task cannot

begin execution until all the tasks from which it expects

inputs complete their executions. Due to non-negligible

inter-processor delays, the starting time of a dependent

task may be delayed further if input data are commu-

nicated from tasks on other processor(s). While this

analysis does not explicitly consider control dependen-

cies where the workload may change depending on the

run-time resolutions, the proposed technique can still

be applied if the control dependencies are cleared, e.g.,

by either taking one of possible outcomes or considering

the worst case of all outcomes.

2.4 Fault Model and Re-Execution

In hardware systems, faults can be permanent, tran-

sient, or intermittent. In deep sub-micron and nano

regimes, transient faults are the most common faults

due to the increasing susceptibility to radiations — a

result of the continuously rising level of the integra-

tion in semiconductor devices. The number of transient

faults that may occur in a frame depends on the fault

susceptibilities of the underlying system. For a sched-

uled task set, the maximum number of transient faults

X is defined in the way that the probability of incur-

ring more than X faults in a time frame can be safely

ignored. Let X denote the number of fault occurrences

in a task, and then the sum of fault occurrences of all

tasks in a task set is no larger than X .

Fault occurrences during a task execution are

manifested as erroneous outputs. It is assumed

that faults are detected by concurrent error detection

techniques[28]. Depending on the capabilities of de-

ployed error detection mechanisms, a fault may be de-

tected immediately after its occurrence or by the end

of task execution. Immediate fault detection enables

earlier re-executions, thereby saving both energy and

time. However, since this study focuses on the worst-

case finish time, it is assumed that a fault is detected

at the end of task execution. Since the re-executions of

a task can also incur faults, X fault occurrences in a

row (i.e., burst faults) may affect the primary execution

and up to the (X−1)-th re-executions, and the X-th re-

execution finishes fault-free. The worst-case execution

time of executing and re-executing a task T is denoted

by CT and CrT respectively. We assume each task has

only one version of re-execution and the re-execution

will be carried right after its primary execution and on

the same processor, which is the case of many fault-

tolerant systems[6-8,27]. Hence the re-executions of a

task have the same time CrT . In DVS-capable sys-

tems where re-executions could be on different frequen-

cies, it is suggested to always schedule them using the

maximal frequency for the sake of energy[29]. Schedul-

ing re-executions using maximal frequency is equiva-

lent to devoting all slack to slowing down normal tasks

executions. This strategy minimizes the energy con-

sumption in the situation where no fault occurs, which

is the most-occurred situation since fault occurrences

are low-probability events. Therefore, if T incurs to-

tal X faults, its actual execution time is CT + XCrT .

Many re-execution based fault recovery techniques as-

sume that a task’s primary execution and re-executions

use the same version of binary code, and therefore take

the same amount of time, i.e., CT = CrT . Our investi-

gation relaxes the constraint to include the case where

CT 6= CrT for the tasks using different (e.g., lighter)

versions of binary code for re-executions.

272 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

2.5 Problem to Be Addressed

Formally, given a scheduled task set and the maxi-

mal number of faults that could occur during a frame,

one wants to find the feasibility of the schedule by find-

ing its worst-case finish time. Again, a task set is sche-

duled if the task-to-processor mapping and the task-

to-task order in each processor are determined. With-

out the schedule information, one cannot determine the

feasibility of a task set since its worst-case finish time

varies significantly with different schedules. Also, be-

cause of this, the proposed technique works on both

homogeneous and heterogeneous systems.

The problem is trivial if there are no data depen-

dencies among tasks. In this case, the worst-case finish

time of the tasks mapped on a processor can be inde-

pendently determined by considering only one case: the

task with the longest re-execution time of this proces-

sor incurs all the faults. The task with the longest re-

execution time will be simply referred to as the longest

task. The problem, however, becomes more difficult if

otherwise. This is because that if a task’s data depen-

dencies are not cleared, it may not be executed even if

its schedule dependency is cleared, i.e., the processor

is idle. From our work, we can identify two common

practices.

• Common Practice 1. Assume the longest task in-

curs the maximal number of faults. The worst-case fin-

ish time could be underestimated.

• Common Practice 2. Reserve the slack for re-

covery by simply multiplying the re-execution time of

the longest task with the maximal fault number. The

worst-case finish time could be overestimated.

A motivational example is shown in Fig.2 where

tasks are scheduled on three processors. The arrows in

the figure show the data dependencies between tasks.

The communication delay between tasks scheduled on

the same processor or different processors is assumed to

be 0 and 1, respectively. The original schedule is shown

in Fig.2(a). It is assumed that at most two faults oc-

cur. Fig.2(b) shows the true worst case where T2 incurs

all faults, Fig.2(c) shows the underestimation by com-

mon practice 1 where T4, the longest task, is assumed

to incur all faults, and Fig.2(d) shows the overestima-

tion by common practice 2 which reserves the slack by

multiplying the re-execution time of the longest task T4

twice directly. The shaded tasks in the figure are the

faulty tasks.

3 Critical-Task Theory

In this section, we will prove that for any task Tc,

there exists at least one critical task in ASTc ∪ {Tc},

such that when this critical task incurs all the faults,

Tc experiences the worst-case finish time. It is impor-

tant to note that the critical task of Tc may not be

the longest task in ASTc. We will start by proving

Lemma 1∼Lemma 3.

Lemma 1. Given Tc and a faulty task T , and T

is not in any of the critical paths of Tc. All the criti-

Finish TimeWCET: C1=4, C2=5, C3=5, C4=6, C5=5, C6=3

Cycle 0 5 10 2015 25 Cycle 0 5 10 2015 25

p1

p2

p0

p1

p2

p0

p1

p2

p0

T1 T1

T1

T2 T2

T2

T3 T3

T3

T6 T6

T6

T4 T4

T4T4

T5 T5

T5T5

Idle Idle

T3 T6IdleIdle

Idle Idle

Idle

Idle

(a)

(b)

(d)
(c)

p1

p2

p0

T4T4

T2

T1 T2

T2

T4T4

Fig.2. Motivational example. (a) Original schedule of tasks. (b) Task T2 incurs all 2 faults, which results in the real worst case with
the finish time being 25. (c) Common practice 1, which assumes the longest task T4 incurs all 2 faults, underestimates the real worst
case. (d) Common practice 2, which reserves the slack by multiplying the re-execution time of the longest task T4 twice, overestimates
the real worst case.

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 273

cal paths of Tc when T incurs x faults are still critical

paths when T incurs x′ faults, and the finish time of Tc

does not change, as long as x > x′ > 0.

Explanation. This lemma has two implications.

First, the critical paths of Tc when T incurs x faults

will remain as the critical paths of Tc when T incurs

x′ faults, as long as x > x′. Second, if a path from the

Source to Tc was not a critical path when T incurred x

faults, it will not become a critical path when T incurs

x′ faults, as long as x > x′.

Proof. On one hand, because x′ < x, the weight of

vertex T is reduced, which further reduces the lengths

of all the paths from Source to Tc that include T . On

the other hand, since the length of a path depends only

on the weights of the vertices and edges along the path,

the change of T ’s fault occurrences will not change the

length of the paths that do not include T , including

those critical paths. And since no path will get a longer

length, those critical paths remain as critical paths.

Therefore the finish time of Tc does not change. This

proves Lemma 1. �

Lemma 2. Assume there are two tasks, T1 and

T2, which are in ASTc and incur x1 and x2 faults re-

spectively. A worse or status-quo finish time of Tc can

always be found by letting a task T ∈ ASTc incur all the

x1 + x2 faults. T could be either T1 or T2, or another

task in ASTc.

Proof. If one of the two tasks, say T1, is not in any

critical path of Tc, a worse finish time of Tc can be

easily obtained by letting T1 incur 0 fault, and letting

any task that is in a critical path of Tc incur x1 more

faults. This is because, from Lemma 1, as the number

of faults occurring in T1 decreases, all critical paths of

Tc will not be affected and the finish time of Tc does

not change since T1 is not in any critical path of Tc.

On the other hand, if there is a task T from a critical

path of Tc which incurs x1 more faults, the length of

this critical path increases, so does the WCFT of Tc.

This proves Lemma 2 if either T1 or T2 or neither is in

critical paths of Tc.

If both T1 and T2 are in the critical paths of Tc,

there could be two cases. The first case is that there

exists one critical path that includes T1 but not T2.

The critical path is thus denoted as CPath(Tc)T1
. The

second case is that critical paths that include T1 al-

ways include T2. For both cases, we have the following

rearrangements of faults.

• Rearrangement 1. Let T1 incur x1 + 1 faults and

let T2 incur x2 − 1 faults.

• Rearrangement 2. Let T1 incur x1 − 1 faults and

let T2 incur x2 + 1 faults.

For the first case, rearrangement 1 reallocates one

fault from T2 to T1 and the total number of faults re-

mains unchanged. |CPath(Tc)T1
| will be increased by

the amount of CrT1
, which will result in a worse finish

time of Tc. Repeating this rearrangement will further

worsen the finish time of Tc until T1 incurs x1 + x2

faults and T2 incurs zero fault. This proves Lemma 2

under this situation.

For the second case, rearrangement 1 will change

the length of the critical paths that include both T1

and T2 by the amount of CrT1
−CrT2

. If CrT1
> CrT2

,

the length of the path is increased, thereby resulting

in a worse finish time of Tc. Repeating this rearrange-

ment will further worsen the finish time of Tc until T1

incurs x1 + x2 faults and T2 incurs zero fault. This

proves Lemma 2. If CrT1
< CrT2

, rearrangement 2

will increase the length of the critical path, thereby

resulting in a worse WCFT of Tc. Repeating this rear-

rangement will further worsen the WCFT of Tc until

T2 incurs x1 + x2 faults and T 1 incurs zero fault. This

proves Lemma 2. There is a special third case where

CrT1
= CrT2

. Letting either T1 or T2 incur all the

x1 + x2 faults will reach a status-quo finish time of Tc.

This also proves Lemma 2. �

Lemma 3. If more than one task in ASTc incurs

faults, a worse or status-quo finish time of Tc can al-

ways be found by letting one task T ∈ ASTc incur all

the X faults.

Proof. Lemma 3 is a corollary of Lemma 2.

Let us denote T1, T2, . . . , Tk as these faulty tasks and

x1, x2, . . . , xk as their fault occurrences respectively,
∑k

i=1 xi = X . Lemma 3 can be proved by repeating

Lemma 2. Every time two random faulty tasks are

picked, a worse-case finish time of Tc can be obtained

by rearranging the faults occurring in the two faulty

tasks to the one in a critical path of Tc, or to a third

task if neither of the two tasks is in a critical path.

This procedure continues until there is only one faulty

task T that incurs total X faults. Since the finish time

of Tc is not advanced during all these rearrangements,

Lemma 3 is proved. �

Now it is time to prove the critical-task theory as

stated in Theorem 1 which gives a sufficient condition

for Tc to experience the worst-case finish time.

Theorem 1. There exists at least one task for any

task Tc such that if this task incurs all the expected X

faults, task Tc experiences its worst-case finish time.

This task, which could be Tc itself or a task in ASTc,

274 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

is thus referred to as the critical task (Tct) of Tc.

Proof. Theorem 1 can be proved by contradiction.

The counter statement is that Tc will only experience

the worst-case finish time when more than one task

incurs faults. This statement directly contradicts to

Lemma 3. �

We can further show the other aspect of the critical-

task theory as stated in Theorem 2.

Theorem 2. A (weak) necessary condition for any

task Tc experiencing its worst-case finish time is that

one of its critical tasks incurs all the expected X faults.

The necessary condition is a weak one because there

could be the cases where another pattern of fault oc-

currence may result in the same worst case, but never

worse than the case where one of Tc’s critical tasks in-

curs all the expected X faults. An example is that a

task could have more than one critical task sitting in

the same critical path of this task. The case where a

single critical task catches all the faults results in the

same worst case as the case where more than one of

those critical tasks catch all the faults.

Theorem 1 and Theorem 2 can be easily extended

to identify the critical task of a processor, and then

the critical task of the task set. The critical task of a

processor is the critical task of the last task scheduled

on this processor, and the critical task of the task set

is the critical task of Sink. Unfortunately, the critical

task of a task set may not be the longest task in the

set, and hence cannot be identified easily. We hence

propose a recursive method that identifies the critical

task and the WCFT of a task set in O(|V |+ |E|) where

|V | and |E| are the number of tasks and dependencies

between tasks, respectively.

4 Critical-Task Method to Identify the Worst-

Case Finish Time

Consider a task set that consists of |V | tasks and is

subject to X faults. There are total
(

|V |+X−1
X

)

distinct

cases of fault occurrences[16]. Without the knowledge

from the previous section, one needs to compute the

WCFT for each of these cases, and then chooses the

worst of them. To compute the WCFT for a given fault

occurrence, one needs to determine the longest path

from Source to Sink which takes O(|V |2)[30]. There-

fore the overall time complexity could be

O
((|V |+X − 1)!

X !(|V | − 1)!
|V |2

)

.

We here propose a more efficient method that iden-

tifies the critical task and calculates the WCFT of a

task in O(|V | + |E|) time. Note that while common

practice 2 simply reserves the slack by multiplying the

re-execution time of the longest task with the fault

number, it still needs a Breadth-First Search (or Depth-

First-Search) algorithm to identify the “worst-case” fin-

ish time. Hence it still incurs O(|V | + |E|) time. The

supporting lemma and theorem are given below.

Lemma 4. If a task is not a critical task of any

parents of Tc, it will not be a critical task of Tc.

Proof. According to Theorem 1, Tc will experience

its worst-case finish time when either Tc or one of the

tasks in ASTc incurs all the faults. Apparently, Lemma

4 is applicable only when Tc is not a critical task of it-

self. The following proof thus assumes Tc is fault-free.

Tc could have more than one parent and each par-

ent has its own critical tasks. A parent will experience

the WCFT when one of its critical tasks incurs all the

faults. Let us denote the random task as Tnct . Ac-

cording to the condition of the lemma, Tnct is not a

critical task of any of these parents. If Tnct incurs all

the faults, none of the parents of Tc will experience

their WCFT. As a result, Tc will not experience the

WCFT. This indicates that Tnct is not a critical task

of Tc. �

Essentially, Lemma 4 tells that the critical tasks of

Tc can only be Tc itself or the critical tasks of Tc’s

parents. To determine the WCFT of task Tc, we have

the following two cases.

Case 1. Tc is its own critical task and it incurs

all X faults while all tasks in ASTc finish fault-free.

All parents of Tc thus experience the best-case finish

time (BCFT). The BCFT of each task can be calculated

as long as the schedule is determined (i.e., no need to

know the actual fault occurrences). Since Tc incurs all

X faults, the re-execution time of Tc for tolerating X

faults is X × CrTc. The WCFT of Tc thus equals:

BCFTTc +XCrTc .

Case 2. The critical task of Tc is a critical task

of one of Tc’s parents, and Tc finishes fault-free. Tc

could have more than one parent. The WCFT of Tc

under this case equals:

max{BCFTTp +WE (Tp,Tc) + CTc , ∀Tp ∈ PSTc},

whereWE (Tp,Tc) is the communication delay from Tp

and Tc. Therefore, to determine the worst-case finish

time of Tc, we have Theorem 3.

Theorem 3. The worst-case finish time of Tc

is either BCFTTc + XCrTc, or max{WCFTTp +

WE(Tp, T c) + CTc, ∀Tp ∈ PSTc}, whichever has the

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 275

larger value. If the former is larger, the critical task

of Tc is itself. Otherwise, Tc inherits its critical

task from its parent who has the maximum value of

WCFTTp +WE (Tp,Tc).

Apparently, the critical task and the WCFT of Sink

are the critical task and the WCFT of the task set, re-

spectively. Fig.3 shows the pseudo-code to compute the

WCFT and identify the critical task for a task Tc in

a scheduled task set. It accepts Tc and X as inputs

and outputs the WCFT and one of the critical tasks

of Tc. It also uses three arrays, BCFT (T), C (T) and

Cr(T), to store the best-case finish time, the worst-case

execution time, and the worst-case re-execution time of

all the tasks in a task set respectively. BCFT (T) can

be calculated from the schedule of the task set assum-

ing zero fault occurrence. The communication delay

between any two tasks T and T ′ is recorded in a two-

dimensional array WE(T, T
′). The algorithm updates

two arrays, WCFT (T) and Tct(T), which are initia-

lized to NULL and will be populated by the WCFT and

the critical tasks of all tasks respectively.

WCFT

FindWorstCase

Τ

Τ

Τ

FindWorstCase

Fig.3. Identify the WCFT and a critical task of task Tc.

When the procedure is called the first time with

Tc, it begins by checking if the WCFT and Tct of Tc

are already available. If so, the procedure returns the

recorded values and exits (lines 1 and 2). Otherwise, it

continues to determine if PSTc contains Source, which

indicates that this is the first task on a processor and

does not depend on any other tasks. The WCFT of

this task is computed as BCFT (Tc) +XCr(Tc), that

is, the task is its own critical task and will experience

its WCFT when it incurs all X faults (lines 3∼7).

If PSTc does not contain Source, which indicates

that Tc has some parents, the procedure recursively

calls itself to compute the WCFT of all tasks in PSTc .

Since a task could be in the parents set of several tasks,

it may have been visited before and its WCFT and

critical task are available in WCFT (T) and Tct(T).

If that is the case, the recursive call simply reads the

values and returns (lines 1 and 2). This ensures that

the WCFT and Tct of any task will be computed only

once. After visiting all tasks in PSTc, the task with the

maximum WCFTTp +WE (Tp,Tc) is chosen to be Tp

(lines 8∼18).

Next, the algorithm determines which of the two

cases results in a worse finish time of Tc. IfWCFTTm+

WETm + C(Tc) > BCFT (Tc) +XCr(Tc), Tc inherits

the critical task from TctTm (lines 19∼22); otherwise

Tc is its own critical task (lines 23∼26).

The WCFT and critical task of a processor can be

obtained by calling the procedure with the last task

scheduled on the processor as Tc. Similarly, the WCFT

and the critical task of the whole task set can be ob-

tained by calling the procedure with Sink as Tc. The

algorithm can be viewed as a modified depth-first search

algorithm where the starting point is Sink. Hence it

takes O(|V | + |E|) where |V | and |E| are the number

of tasks and dependencies between tasks, respectively.

5 Example Application of Proposed Method

The proposed method identifies the critical task

of a scheduled task set and finds its worst-case fin-

ish time. This method can be applied to a wide va-

riety of multi-processor systems, where the processors

could be homogeneous or heterogeneous, DVS-capable

or DVS-incapable. In this section, we use a heteroge-

neous DVS-capable multi-processor system as the plat-

form to test the proposed method. Given a DAG task

set, its schedule information hence includes the task-to-

processor mapping, the task-to-task order in each pro-

cessor, and the task-to-speed assignment of each task.

A schedule is optimal if it consumes the least energy if

no fault occurs, and guarantees the feasibility even in

the worst case of fault occurrences. A simulated anneal-

ing (SA) algorithm is proposed. It searches the (near)

276 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

optimal schedule iteratively. In each iteration, a fea-

sible schedule is found, and is accepted if it consumes

less energy than the best schedule so far, or is accepted

with a probability if it consumes more. The proposed

critical-task method is used in every iteration to test if

a newly found schedule is feasible. Hence, the efficiency

of the critical-task method contributes significantly to

the overall efficiency of the whole algorithm. For a com-

parison, the common practice 2 is used to replace the

critical-task method in the same algorithm to see the

effect of its overestimation. We did not implement the

common practice 1 as it underestimates the worst-case

scenario, thereby resulting in infeasible schedules.

5.1 Review of Energy-Aware Task Scheduling

In this subsection, we present related work of apply-

ing DVS technique for energy optimization scheduling

problems in real-time embedded systems. Despite of

a great deal of related work, only few of them investi-

gate the static dependent tasks scheduling for energy

optimization in real-time multiprocessor systems. Luo

and Jha took a combined static and dynamic approach

in [31] to construct an energy-efficient schedule mainly

based on critical path analysis and task execution or-

der refinement. The presented algorithm assumes non-

preemptive tasks with a fixed-priority assignment pol-

icy on a single processor. Similarly, Liu and Mok de-

signed online and offline algorithms in [32] to reduce the

power consumption when executed task cycles are fewer

than those expected. The energy efficient scheduling

policies have also been investigated in [31-33] for perio-

dic tasks.

Since the task scheduling for energy conservation

problem is NP-hard, the probabilistic heuristics includ-

ing genetic and simulated annealing based algorithms

have been proposed in the literature. Kianzad et al.[34]

proposed a genetic algorithm called CASPER for both

homogenous and heterogeneous systems based on the

slack distribution algorithm (PDP-SPM)[35] and the

power variation DVS algorithm (PV-DVS)[36]. A paral-

lel genetic algorithm was proposed by Lin and Ding[37]

to improve search speed, where the population is par-

titioned into several groups and each group was pro-

cessed by a genetic algorithm. Huang et al.[38] explored

a trade-off between the processors and the network links

for energy optimization by extending an existing inte-

ger linear programming (ILP) formulation. A simu-

lated annealing heuristic with timing adjustment (SA-

TA) was then proposed to explore the search space near

the accepted mapping for a new feasible mapping and

energy minimization.

5.2 System Setup

We are given an M -processors system. The proces-

sor set is referred to as R = {p1, p2, p3, ..., pM}, where

each processor has maximal L different speed levels.

Note that the speed levels of different processors could

refer to different speeds. A given task graph is modeled

by a WDAG G = (V,E), with V = (u1, u2, ..., u|V |)

representing a set of nodes and E ⊆ V × V represent-

ing dependency relations. It is assumed that no more

than X faults may occur during the execution frame

restricted by a given deadline. The algorithm is to find

the optimal schedule — a schedule that finishes the

task set on or before the end of execution frame in the

case where the task set experiences the worst-case finish

time, or consumes the least energy in the case where no

fault occurs. The data dependencies between tasks are

preserved throughout the algorithm.

5.3 Energy Model

Energy consumption in the given heterogeneous

DVS-capable system is estimated using the following

parameters:

Π = (R,L, V,E,ET,Θ,Φ, D,X, SA),

where

• R = {p1, p2, p3, . . . , pM} represents the collection

of M heterogeneous available resources;

• L represents the number of speed levels supported

by each processor. Note that heterogeneous proces-

sors may not support the same number of speed levels.

Hence some levels, such as L and L− 1, of a processor

could be the same;

• V = (u1, u2, . . . , u|V |) represents the collection of

|V | interdependent tasks of an application;

• E ⊆ V × V represents the data dependence rela-

tions among |V | tasks;

• ET is a one-dimensional array in which ETi rep-

resents the number of clock cycles needed to perform

task ui;

• Θ is an M×L matrix, in which Θk,l stands for the

clock cycle period corresponding to the l-th speed level

of processor pk. Clock cycle period is the multiplicative

inverse of frequency, so Θk,l =
1

fk,l
;

• Φ = (P d,P s) represents power consumption

which includes both dynamic power consumption P d

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 277

and static power consumption P
s: P d is an M×L ma-

trix, in which P d
k,l is the dynamic power consumed by

performing a task at the l-th speed level of processor

pk; P
s is a one-dimensional array, in which P s

k is the

static power consumed by processor pk as long as it is

powered on;

• D is the given deadline that defines the end of the

execution frame;

• X is the maximum number of faults that may oc-

cur during the execution frame;

• SA = (Ω, t0, t1, δ) is the simulated annealing

based method in this paper, where Ω is the way of en-

coding, t0 is the initial temperature, t1 is the freezing

point which is less than t0, and δ is cooling rate, where

0 < δ < 1.

In a DVS-capable system, energy consumption

can be divided into two parts, frequency-dependent

and frequency-independent, denoted as Ed and Es,

respectively[37,39-40]. Thus, the overall energy con-

sumption of a task set can be computed by the following

equation in which ui is assumed to be carried at the l-th

level of the k-th processor.

E = Ed + Es

=

|V |
∑

i=1

Ed(i) +

M
∑

k=1

P s
k ×D

=

|V |
∑

i=1

P d
k,l × ETi ×Θk,l +

M
∑

k=1

P s
k ×D,

where Ed(i) denotes the energy consumption of task

ui. It is assumed that processors are kept on during

the execution frame of the task set.

5.4 Scheduling Using SA

The simulate annealing (SA) method is an adap-

tation of the Metropolis-Hastings algorithm, a Monte

Carlo method to generate sample states of a thermo-

dynamic system invented by Rosenbluth[41]. It was in-

dependently described by Kirkpatrick in 1983[42] and

by Černý in 1985[41]. Different from the traditional

random searching method, the simulated annealing al-

gorithm is a generic probabilistic meta-heuristic for the

global optimization problem which is often used when

the search space is discrete and large (e.g., traveling

salesman problem). In this subsection, we present an

SA-based algorithm to search for the optimal schedule.

5.4.1 Schedule Representation

Like a chromosome used in genetic algorithms, the

schedule in this work is represented by an ordered list

of genes where each gene contains three data items for a

single task: the task index, the processor index, and the

speed level index[37]. The structure of a schedule is rep-

resented by a 3×|V | array shown in Table 1, where |V |

is the total number of tasks in the task set. The struc-

ture contains all the information carried by a schedule:

the task-to-processor mapping, the task-to-task order

in each processor, and the task-to-speed assignment.

The first column in Table 1 lists the task ID, the sec-

ond column and the third column give the processor

and the speed level on which each task is carried, re-

spectively. The dependencies can be derived from the

array easily. If there are data and/or schedule depen-

dencies from task A to task B, A is always listed on the

left of B, though they are not necessarily adjacent.

Table 1. Schedule Representation

Task Processor Level

u1 p1 L1

u2 p2 L2

...
...

...

u|V | p|V | L|V |

Table 2 shows an example for the task graph shown

in Fig.4 and scheduled on a 2-processor system. The

following information can be read easily from the ta-

ble. Tasks u1 and u5 are scheduled one after the other

on processor p2, and on L1 and L2 speed levels of p2, re-

spectively. Tasks u2, u3 and u4 are scheduled one after

another on processor p1, and on L2, L2, and L1 speed

levels of p1 respectively. The start time of each task

can be derived easily. Each task will be executed on its

allocated processor and its assigned speed level as soon

as its (data and schedule) dependencies are cleared.

Table 2. Schedule Representation Example

Task Processor Level

u1 p2 L1

u2 p1 L2

u4 p1 L2

u3 p1 L1

u5 p2 L2

5.4.2 SA-Based Algorithm

The simulated annealing algorithm that finds the

optimal schedule for a given task set and a given pro-

cessor set is presented in Algorithm 1. The inputs in-

clude:

278 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

1 2

3 4

5

Fig.4. Task graph modeled by a DAG.

• a system with M available heterogeneous proces-

sors, and the clock period Θ, the power profile of each

speed level of each processor;

• a task graph modeled by DAG G = (V,E), and

each task’s worst-case execution time (in terms of cycle

numbers) denoted by ET ;

• a deadline D that defines the length of the frame,

and the maximum number of faults X that may occur

during the execution frame.

Algorithm 1. Find the Optimal Schedule

Require: R,G = (V, E), ET,Θ,Φ,D,X;
Ensure: the minimal energy cost min e and corresponding

schedule min s;
1: Initialize control parameters t0, t1, δ;
2: Encode and generate a feasible initial schedule init s;
3: min s← cur s← init s;
4: min e← cur e← compute energy(cur s);
5: t = t0
6: while t > t1 do

7: for i← 1 to loop do

8: new s = generate new feasible schedule(cur s);
9: new e = compute energy(new s);
10: diff = new e− cur e;
11: if diff < 0 then

12: cur e = new e;
13: cur s = new s;
14: else

15: rnd = Random(0, 1);
16: if exp(−diff/T) > rnd then

17: cur e = new e;
18: cur s = new s;
19: end if

20: end if

21: if cur e < min e then

22: min e = cur e;
23: min s = cur s;
24: end if

25: end for

26: t = t× δ
27: end while

28: print(min s,min e);

After initializing the control parameters such as the

initial and freeze temperatures t0 and t1 and the cool-

ing rate δ, the algorithm starts from a randomly gene-

rated initial schedule (step 2), and tries to improve it

iteratively (steps 6∼27). Each iteration mainly con-

sists of three steps: generating a new feasible schedule

based on the current schedule (step 8), computing its

energy cost (step 9), and accepting it if its energy cost

is lower, or accepting it with a probability otherwise

(steps 10∼26). At the end of each iteration (step 26),

the current temperature t is updated. The loop vari-

able used in step 7 is an integer to restrict the number

of inner loops. The proposed method that identifies

the critical task of a scheduled task set and finds its

worst-case finish time is employed in the function of

generate a new feasible schedule (step 8).

5.4.3 Generate New Feasible Schedules

This subsection introduces our way to generate a

new feasible schedule based on the current schedule.

The difficult part is that the randomness used in this

process must be nicely controlled so that the generated

schedule is legal, i.e., preserving the data dependencies

of the original DAG. Please also note that a legal sche-

dule is an intermediate step towards a complete new

schedule where the task-to-speed assignment is added.

The feasibility test of a complete schedule needs the

proposed critical-task method. Step 8 in Algorithm 1

has two steps:

• Step a finds a new legal schedule. A legal schedule

must preserve the data dependencies of the input DAG,

and might have a different task-to-processor assignment

and task-to-task order from the current schedule.

• Step b finds a proper task-to-speed assignment to

complete the schedule. This is an iterative process and

each iteration randomly finds a speed assignment, and

then tests the feasibility of the complete schedule us-

ing the method proposed in this paper. The iterative

process stops when a feasible schedule is found. If not,

return to step a for a new legal schedule.

Algorithm 2 presents our approach that can gene-

rate a new legal schedule from the current schedule ef-

fectively. It takes the DAG and the current schedule

represented in Table 2 as inputs, and outputs a new

legal schedule. Step 1 is to randomly change the map-

ping of the task based on the current schedule. This is

done by either changing the mapping of a single task, or

swapping the mapping of two tasks. In step 2, it picks

up a random task and records its position in variable

pos. In steps 3∼15, it then finds the nearest predeces-

sor and successor of the task located at pos and records

their positions into variables low and high, respectively.

It can be observed that any position in the range

of [low + 1, high− 1] is a legal position where the task

at pos can be moved. It then picks a random posi-

tion from the range and moves the picked task there in

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 279

steps 17∼22. Extract and Insert(arr, pos, tmp) moves

the picked task at pos to the randomly generated posi-

tion tmp in arr. Algorithm 2 can guarantee the legality

of its output, and there is a probability that all legal

schedules can be reached.

Algorithm 2. Generate New Legal Schedule

Require: the current schedule represented by arr[3][1..|V |], G =
(V, E);

Ensure: a new legal schedule;
1: Generate New Mapping(arr[3][1..|V |]);
2: pos = Random(1, |V |);
3: low ← 0;
4: high← |V |+ 1;
5: for each edge e(i, arr[pos]) ∈ E do

6: if F ind Position(arr, i) > low then

7: low = F ind Position(arr, i);
8: end if

9: end for

10: for each edge e(arr[pos], j) ∈ E do

11: if F ind Position(arr, j) < high then

12: high = F ind Position(arr, i);
13: end if

14: end for

15: if low + 1 == high− 1 then

16: Go to step 1;
17: else

18: tmp = Random(low + 1, high− 1);
19: while tmp == pos do

20: tmp = Random(low + 1, high− 1);
21: end while

22: Extract and Insert(arr, pos, tmp);
23: return arr[3][1..|V |];
24: end if

6 Experiments

Before the critical-task theory proposed in this

work, there are two common practices as mentioned

in Subsection 2.5.

1) Common Practice 1. Assume the longest task in-

curs all the expected faults. The worst-case finish time

could be underestimated.

2) Common Practice 2. Reserve the slack for re-

covery by simply multiplying the re-execution time of

the longest task with the expected fault number. The

worst-case finish time could be overestimated.

We hence design two experiments to show the sig-

nificance of the proposed critical-task theory with one

experiment for each common practice. The experi-

ments are done on well-known DSP benchmarks from

DSPstone[43]. The benchmarks are motiv with five

tasks, 2-motiv and deq with 11 tasks, 2iir and floyd

with 16 tasks, 2-deq with 22 tasks, and 4-lat-iir with

26 tasks.

6.1 Underestimation of Common Practice 1

We have developed a simulator for this purpose.

The simulator uses list-scheduling to get a scheduled

task set for the benchmarks. It then compares

the WCFT calculated using the proposed critical-task

method, as well as the WCFT estimated using common

practice 1. The simulation results of WCFT analysis

are shown in Fig.5. The difference ratio reflects the un-

derestimation of common practice 1. The surface graph

contains the results of five benchmarks with the num-

ber of processors varying from 2 to 8 and the number

of faults varying from 1 to 4, respectively. During the

experiment, two points can be observed as follows. 1)

The critical task may not be the longest task. This

leads to different worst-case finish time. That is to say,

in Fig.5, the higher the curve is, the more significant

the difference is. And the most significant difference

ratio can be close to 23% in some cases. 2) For the

same benchmark, the critical task may change if the

number of processors and/or faults changes, while the

longest task remains the same.

6.2 Overestimation of Common Practice 2

The second experiment is to show the overestima-

tion of common practice 2. Common practice 2 over-

estimates the worst case of a task set, which not only

results in wrong rejections of feasible schedules, but also

wastes the energy of the underline systems. Hence we

divide the experiment into two parts. In the first part,

we check the WCFT overestimated by common prac-

tice 2, a similar experiment as the last subsection. The

experimental results are shown in Fig.6. From Fig.6,

it can be observed that common practice 2 can overes-

timate the WCFT up to 13% compared with the pro-

posed critical-task method.

The second part focuses on energy conservation

in which the SA-based algorithm adopts either the

proposed critical-task method or common practice 2.

We simulate 2-, 4-, 6-, 8-processor heterogeneous sys-

tems with each processor having six speed levels, and

the maximum number of faults varies from 1 to 3.

The frequencies and operating voltage points configu-

ration refers to the Intelr Pentiumr M Processor

datasheet 1○. Table 3 shows the Intelr Pentiumr M

Processor at 1.6 GHz which supports six frequencies

and voltage operating points. As it can be seen from

the table, the clock frequency can be stepped down in

1○Enhanced Intelr SpeedStepr Technology for the Intelr Pentiumr M Processor. http://download.intel.com/design/network/pa-
pers/30117401.pdf, Nov. 2015.

280 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

20

15

10

5

0
8

U
n
d
e
r-

E
st

im
a
te

 (
%

)

6
4

2
1

2
3

of F
aults

of Processors # of F
aults

of Processors # of F
aults

of Processors

of F
aults

of Processors
of F

aults

of Processors

4

(a)

30

20

10

0

8

U
n
d
e
r-

E
st

im
a
te

 (
%

)

6
4

2
1

2
3

4

(b)

20

15

10

5

0

8

U
n
d
e
r-

E
st

im
a
te

 (
%

)

6
4

2
1

2
3

4

(c)

15

10

5

0
8

U
n
d
e
r-

E
st

im
a
te

 (
%

)

6
4

2
1

2
3

4

(d)

30

20

10

0

8

U
n
d
e
r-

E
st

im
a
te

 (
%

)

6
4

2
1

2
3

4

(e)

Fig.5. Common practice 1 underestimates WCFT. (a) 2-motiv. (b) deq. (c) 2iir. (d) 2-deq. (e) 4-lat-iir.

8

6

4

2

0
8O

v
e
r-

E
st

im
a
te

 (
%

)

6
4

2 1
2

3
4

(a)

6

4

2

0
8

O
v
e
r-

E
st

im
a
te

 (
%

)

6
4

2 1
2

3
4

(b)

6

4

2

0
8O

v
e
r-

E
st

im
a
te

 (
%

)

6
4

2 1
2

3
4

(c)

6

4

2

0
8

O
v
e
r-

E
st

im
a
te

 (
%

)

6
4

2 1
2

3
4

(d)

8

O
v
e
r-

E
st

im
a
te

 (
%

)

6
4

2 1
2

3
4

(e)

15

10

5

0

of F
aults

of Processors # of F
aults

of Processors # of F
aults

of Processors

of F
aults

of Processors# of F
aults

of Processors

Fig.6. Common practice 2 overestimates WCFT. (a) 2-motiv. (b) deq. (c) 2iir. (d) 2-deq. (e) 4-lat-iir.

200 MHz decrements over the range from 1.6 GHz to

0.6 GHz. At the same time, the voltage requirement

decreases from 1.484 V to 0.956 V. According to the

dynamic power consumption equation P ∝ CV 2F , the

power consumption goes down by a factor of 6.4. Based

on this premise, other heterogeneous cores’ configura-

tions are derived.

Table 3. Intelr Pentiumr M Processor at 1.6 GHz

Frequency (GHz) Voltage (V)

1.6 1.484

1.4 1.420

1.2 1.276

1.0 1.164

0.8 1.036

0.6 0.956

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 281

The experimental results of energy consumption are

shown in Fig.7. In the experiment, common practice 2

and critical-task method are used under the calcula-

tion of energy consumption of benchmarks by the SA

respectively. The higher energy consumption of the two

methods is set to be the standard which is 100%, while

the lower energy consumption is set according to the

proportion. From Fig.7, we can see that in most cases,

the energy consumption of schedules found by the SA

using the proposed critical-task method is less than that

of using common practice 2. This is because the overes-

timation of WCFT results in less slack for energy con-

servation. It is also observed that the energy consump-

tion by the SA using the critical-task method is 60% of

that of using common practice 2 at some point, which

means that the energy conservation gained by using the

proposed critical-task method can be up to (approxi-

mately) 40%. This gives the evidence that the precise

estimation of WCFT of a schedule can contribute a lot

to energy saving compared with common practice 2.

We also note that when the number of tasks is larger,

the results obtained from common practice 2 are bet-

ter than those by the critical-task method in very rare

cases. This is because that the proposed SA algorithm

is after all a heuristic process, and does not guarantee

the optimal results all the time.

7 Conclusions

In this paper, we investigated the impact of the fault

occurrences on the worst-case finish time of a task set

scheduled in a frame-based multi-processor system. It

is assumed that tasks could have an inter-task depen-

dency, and the number of fault occurrences in a frame is

upper-limited by X . We concluded that there exists at

least one critical task for each task. A task undergoes

its worst-case finish time when one of its critical tasks

incurs all X transient faults assuming one re-execution

is dedicated to one fault. Based on the critical-task the-

ory, a recursive algorithm is then designed to identify

the critical task and the worst-case finish time of a task

set in O(|V | + |E|) where |V | and |E| are the number

of tasks and dependencies between tasks, respectively,

while the state-of-the-art one takes O
((|V |+X−1)!

X!(|V |−1)! |V |2
)

.

Then we conducted experiments on benchmarks,

and compared the results with the common practices

to show the significance of the proposed critical-task

method. Experimental results showed that the common

practices either underestimate the worst case by 23%,

or overestimate it by 13%. We also presented an exam-

ple application where the proposed critical-task method

is used to find the energy efficient fault-tolerant sche-

dule. Experimental results showed that with the same

time complexity as the practice, the proposed method

could help save close to 40% energy.

100

90

80

70

60
1 2 3

2
1 2 3

4
1 2 3

6
1 2 3

8

of Faults from 1 to 3,
of Cores from 2 to 8

Critical-Task

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

C
o
n
su

m
p
ti
o
n
 (

%
)

Common Practice 2

(a)

100

90

80

70

60
1 2 3

2
1 2 3

4
1 2 3

6
1 2 3

8

of Faults from 1 to 3,
of Cores from 2 to 8

Critical-Task

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

C
o
n
su

m
p
ti
o
n
 (

%
)

Common Practice 2

(b)

100

90

80

70

60
1 2 3

2
1 2 3

4
1 2 3

6
1 2 3

8

of Faults from 1 to 3,
of Cores from 2 to 8

Critical-Task

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

C
o
n
su

m
p
ti
o
n
 (

%
)

Common Practice 2

(c)

100

90

80

70

60
1 2 3

2
1 2 3

4
1 2 3

6
1 2 3

8

of Faults from 1 to 3,
of Cores from 2 to 8

Critical-Task

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

C
o
n
su

m
p
ti
o
n
 (

%
)

Common Practice 2

(d)

100

90

80

70

60
1 2 3

2
1 2 3

4
1 2 3

6
1 2 3

8

of Faults from 1 to 3,
of Cores from 2 to 8

Critical-Task

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

C
o
n
su

m
p
ti
o
n
 (

%
)

Common Practice 2

(e)

100

90

80

70

60
1 2 3

2
1 2 3

4
1 2 3

6
1 2 3

8

of Faults from 1 to 3,
of Cores from 2 to 8

Critical-Task

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

C
o
n
su

m
p
ti
o
n
 (

%
)

Common Practice 2

(f)

Fig.7. Comparison of energy consumption by the SA-based algorithm using common practice 2 and the proposed critical-task method.
(a) motiv. (b) 2-motiv. (c) deq. (d) floyd. (e) 2iir. (f) 4-lat-iir.

282 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

References

[1] Wei T, Mishra P, Wu K, Zhou J. Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time sys-

tems. J. Systems and Software, 2012, 85(6): 1386-1399.

[2] Liu C L, Layland J W. Scheduling algorithms for multipro-

gramming in a hard-real-time environment. Journal of the

ACM (JACM), 1973, 20(1): 46-61.

[3] Kopetz H, Grunsteidl G. TTP — A protocol for fault-

tolerant real-time systems. Computer, 1994, 27(1): 14-23.

[4] Chevochot P, Puaut I. Scheduling fault-tolerant distributed

hard real-time tasks independently of the replication strate-

gies. In Proc. the 6th Int. Conf. Real-Time Computing Sys-

tems and Applications, Dec. 1999, pp.356-363.

[5] Dima C, Girault A, Lavarenne C, Sorel Y. Off-line real-

time fault-tolerant scheduling. In Proc. the 9th Euromi-

cro Workshop on Parallel and Distributed Processing, Feb.

2001, pp.410-417.

[6] Girault A, Kalla H, Sighireanu M, Sorel Y. An algorithm

for automatically obtaining distributed and fault-tolerant

static schedules. In Proc. International Conference on De-

pendable Systems and Networks, Jun. 2003, pp.159-168.

[7] Pop P, Izosimov V, Eles P, Peng Z. Design optimization

of time- and cost-constrained fault-tolerant embedded sys-

tems with checkpointing and replication. IEEE Trans. Very

Large Scale Integration Systems, 2009, 17(3): 389-402.

[8] Kandasamy N, Hayes J P, Murray B T. Transparent recov-

ery from intermittent faults in time-triggered distributed

systems. IEEE Trans. Computers, 2003, 52(2): 113-125.

[9] Olteanu A, Pop F, Dobre C, Cristea V. A dynamic

rescheduling algorithm for resource management in large

scale dependable distributed systems. Computers & Math-

ematics with Applications, 2012, 63(9): 1409-1423.

[10] Pop F, Dobre C, Cristea V. Performance analysis of grid

DAG scheduling algorithms using MONARC simulation

tool. In Proc. the 7th ISPDC, Jul. 2008, pp.131-138.

[11] Pop F, Cristea V. Intelligent strategies for DAG schedul-

ing optimization in grid environments. arXiv Preprint,

arXiv: 1106.5303, 2011. http://arxiv.org/ftp/arxiv/pape-

rs/1106/1106.5303.pdf, August 2015.

[12] Ghosh S, Melhem R, Mosse D. Enhancing real-time sched-

ules to tolerate transient faults. In Proc. the 16th IEEE

Real-Time Systems Symposium, Dec. 1995, pp.120-129.

[13] Burns A, Davis R, Punnekkat S. Feasibility analysis of fault-

tolerant real-time task sets. In Proc. the 8th Euromicro

Workshop on Real-Time Systems , Jun. 1996, pp.29-33.

[14] Audsley N, Burns A, Richardson M et al. Applying new

scheduling theory to static priority pre-emptive scheduling.

Software Engineering Journal, 1993, 8(5): 284-292.

[15] Liberato F, Melhem R, Mossé D. Tolerance to multiple tran-

sient faults for aperiodic tasks in hard real-time systems.

IEEE Transactions on Computers, 2000, 49(9): 906-914.

[16] Aydin H. Exact fault-sensitive feasibility analysis of real-

time tasks. IEEE Trans. Computers, 2007, 56(10): 1372-

1386.

[17] Chrobak M, Hurand M, Sgall J. Fast algorithms for testing

fault-tolerance of sequenced jobs with deadlines. In Proc.

the 28th IEEE RTSS, Dec. 2007, pp.139-148.

[18] Thekkilakattil A, Dobrin R, Punnekkat S et al. Resource

augmentation for fault-tolerance feasibility of real-time

tasks under error bursts. In Proc. the 20th Int. Conf. Real-

Time and Network Systems, Nov. 2012, pp.41-50.

[19] Goddard S. On the management of latency in the synthe-

sis of real-time signal processing systems from processing

graphs [Ph.D. Thesis]. The University of North Carolina at

Chapel Hill, 1998.

[20] Liu C, Anderson J H. Supporting soft real-time DAG-based

systems on multiprocessors with no utilization loss. In Proc.

the 31st IEEE RTSS, Nov. 30-Dec. 3, 2010, pp.3-13.

[21] Bauer G, Kopetz H. Transparent redundancy in the time-

triggered architecture. In Proc. International Conference

on Dependable Systems and Networks, Jun. 2000, pp.5-13.

[22] Bretz E A. By-wire cars turn the corner. IEEE Spectrum,

2001, 38(4): 68-73.

[23] Kopetz H. Why time-triggered architectures will succeed in

large hard real-time systems. In Proc. the 5th IEEE FT-

DCS, Aug. 1995, pp.2-9.

[24] Obermaisser R. Event-Triggered and Time-Triggered Con-

trol Paradigms. Springer US, 2004.

[25] Poledna S. Fault-Tolerant Real-Time Systems: The Prob-

lem of Replica Determinism. Springer US, 1996.

[26] Suri N, Walter C J, Hugue M M. Advances in ULTRA-

Dependable Distributed Systems. Los Alamitos, CA, USA:

IEEE Computer Society Press, 1994.

[27] Pop P, Eles P, Peng Z. Schedulability analysis for systems

with data and control dependencies. In Proc. the 12th Eu-

romicro Conf. Real-Time Systems, June 2000, pp.201-208.

[28] Laplante P A. Real-Time Systems Design and Analysis.

John Wiley & Sons, 2004.

[29] Liu Y, Liang H, Wu K. Scheduling for energy efficiency

and fault tolerance in hard real-time systems. In Proc. the

DATE, Mar. 2010, pp.1444-1449.

[30] Manber U. Introduction to Algorithms: A Creative Ap-

proach. Boston, MA, USA: Addison-Wesley Longman Pub-

lishing Co., Inc., 1989.

[31] Luo J, Jha N K. Static and dynamic variable volt-

age scheduling algorithms for real-time heterogeneous dis-

tributed embedded systems. In Proc. the 15th International

Conference on VLSI Design, Jan. 2002, pp.719-726.

[32] Liu Y, Mok A K. An integrated approach for applying dy-

namic voltage scaling to hard real-time systems. In Proc.

the 9th IEEE RTAS, May 2003, pp.116-123.

[33] Cho Y, Chang N, Chakrabarti C, Vrudhula S. High-level

power management of embedded systems with application-

specific energy cost functions. In Proc. the 43rd Annual De-

sign Automation Conference, July 2006, pp.568-573.

[34] Kianzad V, Bhattacharyya S S, Qu G. CASPER: An in-

tegrated energy-driven approach for task graph scheduling

on distributed embedded systems. In Proc. the 16th IEEE

ASAP, Jul. 2005, pp.191-197.

[35] Hua S, Qu G. Power minimization techniques on distributed

real-time systems by global and local slack management. In

Proc. the 10th ASP-DAC, Jan. 2005, pp.830-835.

[36] Schmitz M T, Al-Hashimi B M, Eles P. Iterative schedule

optimization for voltage scalable distributed embedded sys-

tems. ACM Trans. Embedded Computing Systems, 2004,

3(1): 182-217.

Xiao-Tong Cui et al.: Worst-Case Finish Time Analysis for DAG-Based Applications 283

[37] Lin M, Ding C. Parallel genetic algorithms for DVS schedul-

ing of distributed embedded systems. In Proc. the 3rd

HPCC, Sept. 2007, pp.180-191.

[38] Huang J, Buckl C, Raabe A, Knoll A. Energy-aware task al-

location for network-on-chip based heterogeneous multipro-

cessor systems. In Proc. the 19th PDP, Feb. 2011, pp.447-

454.

[39] Hung C M, Chen J J, Kuo T W. Energy-efficient real-time

task scheduling for a DVS system with a non-DVS process-

ing element. In Proc. the 27th IEEE International Real-

Time Systems Symposium, Dec. 2006, pp.303-312.

[40] Xu R, Melhem R, Mosse D. Energy-aware scheduling for

streaming applications on chip multiprocessors. In Proc.

the 28th IEEE Int. Real-Time Systems Symp., Dec. 2007,

pp.25-38.

[41] Černý V. Thermodynamical approach to the traveling sales-

man problem: An efficient simulation algorithm. Journal of

Optimization Theory and Applications, 1985, 45(1): 41-51.

[42] Kirkpatrick S. Optimization by simulated annealing: Quan-

titative studies. Journal of Statistical Physics, 1984,

34(5/6): 975-986.

[43] Živojnović V, Velarde J M, Schläger C, Meyr H. DSPstone:

A DSP-oriented benchmarking methodology. In Proc. the

ICSPAT, Oct. 1994, pp.715-720.

Xiao-Tong Cui received his B.S.

degree in computer science and tech-

nology from Chongqing University,

Chongqing, in 2013. Currently he is a

Ph.D. candidate majoring in computer

science and technology of the College

of Computer Science, Chongqing Uni-

versity. His current research interests

include real-time task scheduling and hardware security.

Kai-Jie Wu received his B.E. degree

in circuits and systems from Xidian

University, Xi’an, in 1996, his M.S.

degree in circuits and systems from the

University of Science and Technology

of China, Hefei, in 1999, and his Ph.D.

degree in electrical engineering from

Polytechnic University (now Polytechnic Institute of New

York University), Brooklyn, in 2004. He was with the

University of Illinois, as an assistant professor. In 2013, he

joined as a professor at the College of Computer Science,

Chongqing University. His current research interests

include computer aided design of radiation hardened VLSI

system, countermeasures for side-channel cryptanalysis for

crypto devices, and robust and fault-tolerant nanotechnol-

ogy designs. Dr. Wu is the recipient of the 2004 EDAA

Outstanding Dissertation Award for “New Directions in

Circuit and System Test”.

Tong-Quan Wei received his Ph.D.

degree in electrical engineering from

Michigan Technological University,

Minnesota, in 2009. He is currently an

associate professor in the Department

of Computer Science and Technology

at the East China Normal University,

Shanghai. His research interests are in the areas of real-

time systems, green and reliable computing, and parallel

and distributed systems. He has served as a regional editor

for Journal of Circuits, Systems, and Computers (World

Scientific) since 2012. He also served as the guest editor of

the IEEE Transactions on Industrial Informatics Special

Section on Building Automation, Smart Homes, and

Communities, and the ACM Transactions on Embedded

Computing Systems Special Issue on Embedded Systems

for Energy-Efficient, Reliable, and Secure Smart Homes.

He is a member of CCF and IEEE.

Edwin Hsing-Mean Sha received

his Ph.D. degree in computer science

from the Department of Computer

Science, Princeton University, USA, in

1992. From August 1992 to August

2000, he was with the Department of

Computer Science and Engineering

at University of Notre Dame, USA. Since 2000, he has

been a tenured full professor at the University of Texas

at Dallas. Since 2012, he has served as the dean of the

College of Computer Science at Chongqing University,

Chongqing. He has published more than 300 research

papers in refereed conferences and journals. His work has

been cited over 2 200 times. He received Teaching Award,

Microsoft Trustworthy Computing Curriculum Award,

NSF CAREER Award, NSFC Overseas Distinguished

Young Scholar Award, Chang Jiang Scholar Honorary

Chair Professorship, and China Thousand Talents Pro-

gram.

