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Uncertainty-Aware Household Appliance Scheduling
Considering Dynamic Electricity Pricing in
Smart Home

Xiaodao Chen, Tongquan Wei, Member, IEEE, and Shiyan Hu, Senior Member, IEEE

Abstract—High quality demand side management has become
indispensable in the smart grid infrastructure for enhanced energy
reduction and system control. In this paper, a new demand side
management technique, namely, a new energy efficient scheduling
algorithm, is proposed to arrange the household appliances for op-
eration such that the monetary expense of a customer is minimized
based on the time-varying pricing model. The proposed algorithm
takes into account the uncertainties in household appliance op-
eration time and intermittent renewable generation. Moreover,
it considers the variable frequency drive and capacity-limited
energy storage. Our technique first uses the linear program-
ming to efficiently compute a deterministic scheduling solution
without considering uncertainties. To handle the uncertainties in
household appliance operation time and energy consumption, a
stochastic scheduling technique, which involves an energy con-
sumption adaptation variable 3, is used to model the stochastic
energy consumption patterns for various household appliances.
To handle the intermittent behavior of the energy generated from
the renewable resources, the offline static operation schedule is
adapted to the runtime dynamic scheduling considering variations
in renewable energy. The simulation results demonstrate the ef-
fectiveness of our approach. Compared to a traditional scheduling
scheme which models typical household appliance operations in
the traditional home scenario, the proposed deterministic linear
programming based scheduling scheme achieves up to 45% mone-
tary expense reduction, and the proposed stochastic design scheme
achieves up to 41% monetary expense reduction. Compared to a
worst case design where an appliance is assumed to consume the
maximum amount of energy, the proposed stochastic design which
considers the stochastic energy consumption patterns achieves up
to 24% monetary expense reduction without violating the target
trip rate of 0.5%. Furthermore, the proposed energy consumption
scheduling algorithm can always generate the scheduling solution
within 10 seconds, which is fast enough for household appliance
applications.

Index Terms—Smart home, stochastic scheduling.
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I. INTRODUCTION

HE electrical power grid is a complex adaptive system

with significant amount of uncertainties. The integration
of advanced technologies such as renewable energy generation
including wind farms and solar cells introduces further com-
plexity and challenge to various controllers at all levels of the
power grid [1]. Salient communication and information tech-
nologies have been explored in utility industry to handle the in-
creasing complexity [2].

In a smart grid infrastructure which targets to facilitate the
modernization of the classical power grid, utility companies ex-
plore demand side management (DSM) technology to control
the energy consumption at the user side [3]-[7]. It enables the
integration of various renewable energy resources such as solar,
wind and hydrate energy into the classical electrical power grid
[6], [7]. Demand side management technology can help shift the
energy consuming workload from peak time to off-peak time for
the purposes such as load balancing and monetary expense re-
duction [8], which is critical in a smart home system.

There are multiple components in a smart home system
such as household appliances, plug-in hybrid electric vehicles
(PHEVs), energy storage component and renewable energy
component such as photovoltaic (PV) arrays. Typical exam-
ples of household appliances include air conditioners, space
heaters, washing machines, and refrigerators. Energy storage
such as high capacity batteries are often used to store energy
generated from photovoltaic arrays. Each residential customer
is equipped with a smart meter that is connected to the power
distribution system [5], [9], [10]. Each smart meter includes
a scheduling unit which implements the workload shifting
mentioned above. It periodically receives the updated pricing
information from the utility companies, and its scheduling unit
arranges different household appliances for operation during
different time periods. It is effective in reducing the monetary
expense charged to end users since different electricity rates
can be applied at different time periods in the popular real-time
pricing model [11]-[14]. Refer to Fig. 1 for a smart home
scenario. This paper aims to minimize the monetary expense of
a single customer through optimally scheduling the operation
and energy consumption for each appliance under the real-time
pricing environment.

Considerable research effort has been devoted to the inves-
tigation of the scheduling issue in the demand side manage-
ment for reducing the monetary expense of the customer and
peak-to-average ratio in load demand. Kim et al. [15] investi-
gated the energy consumption scheduling problem with time-
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Fig. 1. A smart home scenario.

varying prices known in advance to customers. Optimal sched-
uling algorithms that bring significant gains to customers were
derived to find a series of price thresholds by using stochastic
dynamic programming. Mohsenian-Rad ef al. [16] designed an
interesting optimal and automatic residential energy consump-
tion scheduling framework by combining a real-time pricing
tariff with inclining block rates. The proposed framework at-
tempts to achieve a desired trade-off between minimizing the
monetary expense and minimizing the waiting time for the op-
eration of each appliance in a household. In [17], [18], the au-
thors presented an energy consumption scheduling heuristic to
reduce the peak load in individual homes or buildings with rea-
sonable computation time. The operations of household appli-
ances are classified into preemptive and non-preemptive oper-
ations, and the scheduling for preemptive operations is based
on the schedule of the non-preemptive operations. In [19], the
authors proposed a power scheduling protocol for demand re-
sponse in smart grid systems. A joint media access and appli-
ance scheduling approach was developed to manage the power
usage of appliances so that total power demand is kept below a
target value. Extensive research on the demand side load man-
agement also has been performed for a neighborhood with mul-
tiple customers. In [4], [5], the authors considered the deploy-
ment of energy consumption scheduling devices in smart me-
ters for demand side management in a neighborhood. Based on
game theory, a distributed incentive-based energy consumption
scheduling algorithm was proposed to find the optimal energy
consumption schedule for each subscriber in the neighborhood.
The presented algorithm aims to reduce the peak-to-average
ratio, total energy costs, and electricity charges of individual
customers. Caron and Kesidis [20] proposed a dynamic pricing
scheme incentivizing consumers to achieve an aggregate load
profile suitable for utilities. Based on the degree of informa-
tion sharing, distributed scheduling algorithms were designed
to reduce the total cost and peak-to-average ratio, and improve
the overall load profile of the system. In [21], the authors pro-
posed a three-step control methodology to manage the coopera-
tion between technologies of energy production, consumption,
and storage. A better matching of demand and supply can be
achieved through using this methodology.

In the above recent research works which focus on reducing
the monetary expense of customers and peak-to-average ratio
of the system, the stochastic characteristics of customer energy

consumption patterns are not considered, which is however
quite important. Stochastic design technique itself has been
investigated in the literature in varying contexts such as sto-
chastic security constrained unit commitment (SCUC) design
[22] and wireless base station construction [23]. In [22] and
[23], the uncertain problem is directly approached using the
stochastic programming technique, and the benders decom-
position method is utilized to reduce the time to obtain the
optimized results. In [24]-[26], the authors presented stochastic
models that minimizes the total cost of operations of generation
units and transmission network with the consideration of the
power system uncertainties, which include the availability of
generation units and transmission lines, and inaccuracies in
load forecasting. Monte Carlo simulation is utilized to model
the uncertainties, and the lagrangian relaxation method is
applied to decompose the stochastic problem into subproblems.
However, no related work on stochastic optimization has been
found in the area of smart home design.

In addition, the energy storage and renewable generation such
as wind and solar are not considered in most of the related re-
search works. With emerging requirements for renewable port-
folio standards, wind and solar generation become a must-take
resources in many countries of the world and about 30 of 50 U.S.
states [6], [27]. For instance, the State of California requires
33% of the total energy generated from renewable resources by
2020. However, there could be significant difference between
the predicted energy generation and the actual energy genera-
tion from renewable resources. For example, the solar energy
generated from a PV panel may vary with the changes in sun
irradiation level, the angle of the sun, or even the lasting time of
cloud shadow. This intermittent nature of renewable resources
imposes significant challenge in designing salient scheduling
techniques considering renewable generation [6].

Furthermore, most existing smart home energy scheduling
works do not consider variable frequency drive (VFD) which
is however a very important technique for expense minimiza-
tion and load balancing. Basically, the typical execution time
of a task is determined assuming that the task is scheduled to
operate at a typical frequency level. The execution time varies
with different frequencies. For example, if a micro-wave oven
originally needs 10 minutes to cook a dish when operating at its
nominal frequency 1.5 GHz, it might need only 5 minutes when
operating at 3 GHz. As far as the performance is concerned, it
is certainly desirable to schedule the household appliance to run
at the high frequency.

Oftentimes, there is a limit on the total load demand for each
household during a certain time interval. When the total load
demand of household appliances exceeds the given load limit
of the household, the home power network trips out. This will
lead to degradation of customer comfortableness. The proba-
bility that the home power network trips out during a time in-
terval is defined to be the trip rate. Or course, the scheduler
should try to avoid tripping out. However, since there are un-
certainties in the energy consumption of household appliances
as well as renewable generation, one can only minimize the trip
rate (to a very small value) in practice. Thus, it is desired for cus-
tomers to set a trip rate constraint (e.g., 0.5%) such that the trip
rate of the scheduling solution is no greater than the constraint.
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In this paper, an energy efficient scheduling algorithm is pro-
posed to minimize the monetary expense without compromising
the comfortableness of customers. Precisely, the proposed op-
eration scheduling algorithm takes as inputs the time-varying
pricing information released by power utility companies ahead
of time, distributed renewable generations and energy storage,
and the customer-defined target trip rate. It generates an oper-
ation schedule over a pre-defined time domain (called horizon)
that minimizes the customer monetary expense and meet the
customer-defined trip rate. The major contribution of this paper
is summarized as follows. Our algorithm features the consid-
eration of the uncertainties in household appliance operation
time and energy consumption and energy generated from the re-
newable resources. To handle the uncertainty in household ap-
pliances, a stochastic scheduling algorithm which involves an
energy adaptation variable [ to model the uncertainty in en-
ergy consumed by an appliance is designed. On the other hand,
since the real-time energy generated from renewable energy re-
sources is much more difficult to predict precisely, its uncer-
tainty will be handled using online scheduling algorithm, which
adapts the static operation schedules to the runtime intermit-
tent behavior of renewable energy resources. The proposed al-
gorithm can also handle the scheduling of operations of VFD-
equipped appliances. The simulation results show that when
compared to a worst case design where an appliance is assumed
to consume the maximum amount of energy, the proposed de-
sign that considers the stochastic energy consumption patterns
achieves up to 24% monetary expense reduction without vio-
lating the target trip rate of 0.5%. When compared to a natural
greedy algorithm which models typical household appliance op-
erations in the traditional home scenario, the proposed determin-
istic linear programming based scheduling scheme achieves up
to 53% monetary expense reduction. Furthermore, the proposed
energy consumption scheduling algorithm can always generate
the scheduling solution within 10 seconds, which is fast enough
for household appliance applications.

The rest of the paper is organized as follows. Section II
describes the system architecture and models, and defines the
optimization problem. Section III formulates the scheduling
problem into a linear programming problem and proposes the
offline operation scheduling algorithm that minimize the cus-
tomer monetary expense. In Section III-C, the offline operation
schedule is adapted to the intermittent behavior of the renew-
able generation. Section IV presents the simulation results, and
Section V concludes the paper.

II. SYSTEM ARCHITECTURE AND MODELS

This paper aims to minimize the monetary expense of the cus-
tomer through optimally scheduling the operation and energy
consumption for each appliance considering uncertainties under
the real-time pricing environments. The following subsections
describe the system models and problem definition.

A. Residential Customer Model

As is illustrated in Fig. 1, a residential unit may include
various household appliances such as air conditioners, space
heaters, washers, refrigerators, plug-in hybrid vehicles, etc. Let
a denote an appliance and A denote the set of appliances. For
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each ¢ € A, an energy consumption scheduling vector X is
defined as

X 2z 2T,
where T’ is the scheduling horizon that denotes the number of
time units ahead of which the scheduling decision on energy
consumption is to be made. For a pricing structure that releases
price information one day ahead [28], the scheduler arranges the
operation of appliances for the next 24 hours. The scheduling
horizon is 24 hours in this scenario. The resolution of sched-
uling horizon can be hours, minutes, or even seconds, depending
on the available pricing information and the computing capa-
bility of the scheduler in the smart meter. For example, since the
Ameren Illinois Power Corporation releases hourly price infor-
mation one day ahead [28], the resolution of scheduling can be
set to hourly in this case.

For each time unit 7 € T £ [1,2,...,T] in the horizon of
scheduling, the element x, of the vector X denotes the energy
consumed by the appliance a during the interval 7. Suppose that
there are two user-defined time instants 6, and #, which indicate
the start time and end time of the operation of the appliance a,
respectively. It is clear that 6, < €, holds and the appliance
a consumes no energy beyond the interval of [4,, #,]. In other
words, z] = 0 for7 < é, or7 > f,.

It is assumed that each appliance . € A has a maximum
energy level in the interval of 7, which is defined to be the
rated power and denoted by F,. For example, let a denote a
laundry machine and it may operate at the power of up to P, =
5.6 kW per hour. Itis clear thatz] < P, holds, where ], is the
actual energy consumed by the appliance a during the interval
of 7. Oftentimes, there is a limit on the total energy consumed
by various appliances of a household in the time interval of 7.
Let L7, denote the value of the energy limit, then the inequality

doap <L ()

acA

holds for = € T. When the above constraint is violated, the
home power network will be tripped out.

The total energy consumed by an appliance ¢ € A during
the scheduling horizon 7" is given by > .« and denoted
by ET. ET is essentially a random variable. For instance, the
laundry time of an advanced laundry machine depends on the
load, which is usually a Gaussian distribution. As a result, the
energy consumed by the machine follows the Gaussian distri-
bution of the probability.

Let ;+ denote the mean and o denote the standard deviation of
the random variable, and let y™* and y™** denote the minimum
and maximum value of the random variable, respectively. For
a random variable following a Gaussian distribution, with more
than 99% confidence its maximum deviation from the mean is
bounded by 3. Thus, we set y™ = ;;—3¢ and vy = p+30.

During our optimization, since it is difficult to directly solve a
mathematical program with uncertainty the energy optimization
problem is transformed into a set of deterministic optimization
problems without random variables (refer to Section III). In this
work, motivated from [29], a variable 3, referred to as energy

adaptation variable, is introduced to model the uncertainty in
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Fig. 2. An example of the one day ahead pricing structure [28].

energy consumed by an appliance. The actual energy consump-
tion of the appliance ¢ € A during the scheduling horizon T

can be expressed as a function of 3, v2™, and v;***, that is,

BT = (1= ) x 4 4 8 x 7, @)
where 0 < § < 1. The energy consumption of appliance a
during T is y™** if 8 = 1 and is v, if 5 = 0.

a a

B. Pricing Model

In the literature, numerous time-differentiated pricing models
have been proposed which include real-time pricing (RTP), day-
ahead pricing (DAP), time-of-use pricing (TOU), critical-peak
pricing (CPP), inclining block rates (IBR), etc. [16]. Among
them, the RTP and IBR models have been extensively inves-
tigated from various perspectives [30]—-[37]. Basically, in RTP
pricing model prices could be different for different time inter-
vals while they are flat within each time interval. In contrast,
in IBR pricing model prices remain the same over time while
incuring an increase when the energy consumption of a residen-
tial unit reaches a pre-determined threshold. Combining RTP
and IBR pricing models, which can reflect both the fluctuating
wholesale price and the energy consumption level, would lead
to the promising replacement model of the current flat rate tar-
iffs [16].

As is in [16], let ¢” (E7) denote the price of the energy con-
sumed by all household appliances in the interval of 7, then
¢™(E7%) can be formulated as

b 0< EL <1

T Ty — “th

where b7, b5 > 0 are differentiated price and /], is the energy
consumption threshold in the time interval of 7.

It is assumed that real-time pricing parameters b{, b3, and
{7, are known for users ahead of time. For example, one day
ahead pricing data released by Ameren Illinois Power Corpora-
tion [28] are available online (refer to Fig. 2). These data can
be utilized to schedule the operation of appliances for monetary
expense optimization.

Note that the proposed energy consumption scheduling
scheme is independent of pricing models or pricing prediction

models as is described in [38], [39]. Thus, the proposed scheme
can be combined with other pricing models to minimize the
customer monetary expense.

C. Photovoltaic (PV) Model

With the increasing the penetration of grid-connected photo-
voltaic systems, extensive research has been conducted on ob-
taining the maximum power output from an PV array and on the
efficient use of fluctuating solar energy. For example, various
photovoltaic array Maximum Power Point Tracking (MPPT)
techniques are summarized and compared in [40]. It is shown
that the two-stage IncCond [41], [42] and the current sweep
[43] MPPT methods are appropriate for residential areas, which
can be further combined with the irradiance forecasting scheme
presented in [44] to estimate the energy output. Taking the PV
array output energy as input, the proposed energy consumption
algorithm attempts to maximize the benefit from solar energy so
as to minimize the overall monetary expense of the residential
customer.

Note that the proposed scheme is also independent of spe-
cific solar power prediction models. In other words, the pro-
posed scheme can be jointly utilized with any other solar power
prediction approach. For the illustration purpose, in this work
the power generated from a photovoltaic system is assumed to
follow the probabilistic distribution function derived from his-
torical data.

III. THE PROPOSED STOCHASTIC SCHEDULING ALGORITHM
FOR HOUSEHOLD APPLIANCES

Our algorithm consists of three parts. The first part is a
linear programming based deterministic scheduling algorithm.
The second part is a stochastic scheduling technique based on
the deterministic linear programming scheduling technique
to handle the uncertainty in energy consumption and runtime
of household appliances. The last part is the online runtime
scheduling, which can effectively handle the uncertainty in the
energy generation from the photovoltaic system.

A. Linear Programming Based Deterministic Scheduling

A residential unit consumes solar energy in addition to the
energy from electrical grid. The solar energy from PV could be
consumed by a residential unit, stored in a battery, or wasted if
the battery is full. It is assumed that the price of energy from
electrical grid is higher than that of the per-unit cost of solar
operation and maintenance, and customers prefer to use solar
energy.

Let y;, and e] denote the energy from electrical grid and the
energy produced by the PV system in the time interval of T,
respectively, and let ¢, and ¢ denote the unit price of the energy
from electrical grid and solar energy, respectively, in the time
interval of 7, then the objective function is given by (4), where
T is the scheduling horizon. b. denotes the cost of battery and
1. denotes the one-time installation cost of solar panel, both
normalized to the scheduling horizon 7. Note that the unit price
of the solar energy (¢7) essentially indicates the per-unit cost of
solar operation and maintenance.
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The energy consumed by all appliances in the interval of 7 is
typically upper bounded by a constant value L7,, which is ex-
plained in (1) and rewritten in (5). If the total energy consump-
tion in a residential unit exceeds the limit L, , then the electricity
supply to the unit trips out.

It is assumed that the energy consumed by an appliance ¢ € A
during the scheduling horizon of T follows a distribution of
probability. The mean of the energy consumption is denoted by
ET  In the offline scheduling, this mean value is taken as the
energy consumed by the appliance in the time span of 7', as is
given in (6). Equation (7) shows that the energy consumed by
an appliance ¢ € A in the interval of 7, which is denoted by =],
is less than or equal to the rated power of the appliance, which is
denoted by P,. Equation (8) indicates that an appliance does not
consume any energy beyond the interval defined by its operation
start time 6, and operation end time §,,.

Lety; and y] denote the solar energy and the battery energy
consumed by all appliances in the time interval of 7, respec-
tively. Then the energy consumed by all appliances in a resi-
dential unit in the interval 7 is the sum of the energy from the
grid, the solar energy directly from the PV system, and the bat-
tery energy, which is given in (9), where ¥, is the energy from
the grid.

As is described in (10), part of the solar energy, which is de-
noted by ¥, is provided to household appliances, and the re-
maining solar energy, which is denoted by 27, is stored in the
battery. Since there could be waste of solar energy, the solar en-
ergy e. produced by the PV system is greater than or equal to
the sum of the consumed and stored solar energy.

Equation (11) describes the energy constraint on the battery.
Let 2 denote the remaining energy in the battery at the begin-
ning of the interval 7, and 2, ~1 denote the remaining energy in
the battery at the beginning of the immediate previous interval
(r — 1). Similarly, the z7 ! and ygfl denote the solar energy
stored in the battery and the battery energy consumed by all ap-
pliances in the immediate previous interval of (7 — 1), respec-
tively. Equation (11) indicates that the current battery energy in
the time interval of 7 (z] ) equals the remaining battery energy
(27 1) plus the solar energy stored in the battery (27 1), and
minus the battery energy provided for appliances in the imme-
diate previous time interval ('y,f*l).

In general, the lifetime and price of a battery depends on the
total energy throughput of the battery, which is a fixed value by
ignoring other aging effects. As a result, the price of a battery
can be normalized to the scheduling interval of 7. Let b], denote
the price of the battery with respect to the interval of 7 and b,
denote the price of the battery with respect to the scheduling
horizon T'. The b, is then given by (12), where 2 is the solar
energy charged to the battery in the interval of 7.

Considering the grid electricity cost (y;, x ¢, ), the solar oper-
ation and maintenance cost (e x ¢ ), the battery cost (b..), and
the one-time installation cost of solar panel (1), the optimiza-
tion for the customer monetary expense is hence formulated as
a linear programming problem, which is given as follows.

> (wn x et el X el) 4 be + L. @)
7€l

minimize:
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subject to: Z xr <L, VreT &)
aCA
Z T =EF Vac A (6)
€T
zl < P, Vae A, 7T @)
2, =0,Va €A, 7¢[b,,6,] (8)
=y +yl+yL VreT )
a€A
ys + 2 Seg, VreT (10)
zp = z{fl R ygfl, Te2,....T]
(11)
be= Y 2] x U], (12)

T7eT

Variable Frequency Drive (VFD) technology has been widely
adopted in household appliances such as air conditioner and
fans to obtain smooth speed control and achieve significant en-
ergy savings [45]. For an appliance with VFD, its power con-
sumption for different scheduling intervals is different while
the power consumption for a single scheduling interval 7 is the
same. For an appliance without VFD, its power consumption
in different scheduling intervals remains the same. The above
energy consumption scheduling formulation handles the house-
hold appliances with VFD. That is, an appliance does not change
operating frequency within an interval but can operate at dif-
ferent frequencies in different scheduling intervals.

B. Energy Adaptation Variable Based Olfffine Stochastic
Scheduling

In this paper, motivated from [29], a systematic trip rate-
driven stochastic scheduling algorithm is proposed to derive the
desired energy adaptation variable 3 and generate the operation
schedule for a given set of household appliances with trip rate
requirements. Note that this is an offline scheduling (to handle
the uncertainty in household appliances) and the online sched-
uling scheme is described in Section III-C (to handle the uncer-
tainty in renewable generation).

As described in Fig. 3, for a given set of appliances ¢ € A
and the target trip rate p;, a value of the energy adaptation vari-
able (3 is iteratively picked, and the actual energy consumed by
each appliance in the scheduling horizon 7' is derived using (2)
based on the selected 3 (step 4). The operation schedule of the
appliance set is then generated through solving the linear pro-
gram (step B). Finally, the trip rate p of the resultant operation
schedule is derived using Monte Carlo simulation (step C). If
the trip rate of the schedule does not satisfy the stop-condition
of the algorithm, the energy adaptation variable /3 is adjusted
and the above process is repeated. If the trip rate of the opera-
tion schedule satisfies the stop-condition of the algorithm, the
valid operation schedule is generated and its trip rate meets the
system trip rate requirement. In other words, the output oper-
ation schedule is the desired operation schedule if (p; — p) >
e > 0 holds, where ¢ is an arbitrarily small positive number.
The design flow of the algorithm is illustrated in Fig. 4. Each
step of the offline scheduling algorithm is described in details
in the following subsections.
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Input: v™" and 4™ for a € A; target trip rate p;

Output: the desired 3; expense efficient operation schedule
1. pickavalueof Sin0< <1
2. repeat

3. A:update ET for a € A based on 3

4. B: generate an operation schedule by solving the LP

5. C: derive p for the operation schedule using Monte

Carlo simulation; update (3
6. until (p; —p) > € >0

Fig. 3. The Offline stochastic scheduling algorithm to iteratively derive the
energy adaptation variable  and generate the monetary expense efficient oper-

ation schedule.
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by appliances ( Ef) using PDF
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Scheduling
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Evaluate schedule trip rate
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Fig. 4. The design flow of the household appliance energy consumption sched-
uling algorithm.

1) [(-Enabled Parallel Appliance Operation Scheduling:
The energy adaptation variable § can adapt energy consumed
by an appliance to the Gaussian probability distribution of
energy consumption patterns. It enables the trip rate-driven
scheduling of appliance operation based on pricing information
released ahead of time. Since 0 < 3 < 1, the energy consumed
by an appliance a € A during the scheduling horizon 7" ranges
from ™ to y™M3% a5 is shown in (2).

Due to the statistical property of energy consumption pat-
terns, there exists no fixed relationship between the energy adap-
tation variable 8 and the trip rate of a schedule. Although the
current trip rate p of the operation schedule can not be directly
used to find the value of 3 in the next iteration, the energy con-
sumed by a household appliance is linear with the energy adap-
tation variable 3 according to (2). Therefore, it is natural to use
a step search strategy to derive the desired 3 that minimize the
customer monetary expense. The [ is initialized to 0 and the the
step length depends upon the time requirements to generate the
desired operation schedule.

The introduction of the energy adaptation variable 3 in fact
makes the proposed algorithm parallelization friendly through

utilizing the powerful computing capacity of modern com-
puters. The iterative appliance operation scheduling algorithm
shown in Fig. 3 is essentially a pipelined processing stages,
each of which consists of using § to adapt energy consumed
by an appliance to energy consumption patterns, solving linear
program to generate an operation schedule, and evaluating
the resultant operation schedule. This pipelining property of
the algorithm naturally facilitates the concurrent generation of
operation schedules and strikingly reduces the time to generate
the desired J and operation schedule. The key fact is that the
above procedure with different 8 can be performed indepen-
dently. For example, for a given a dual core processor, if the
current value of J is y and current trip rate does not meet the
specified stop-condition, the next iterations of the algorithm
with 8 = Gy + £ and 8 = §y + 2 can be run simultaneously
on core 1 and core 2, respectively, where ¢ is the specified step
length.

2) Derive the Trip Rate Using Monte Carlo Simulation
and Latin-Hypercube Sampling: The trip rate of an operation
schedule for a given set of appliances is evaluated using Monte
Carlo simulation under the assumption that the energy con-
sumption patterns follows the Gaussian probability distribution.
Oftentimes, the trip rate of an operation schedule is obtained in
two major steps. In the first step, the energy consumed by an
appliance during the scheduling horizon is generated based on
the probability distribution of the energy consumption patterns.
In the second step, the sum of the energy consumed by all
appliances in a household unit is derived, and whether the
operation schedule trips out is verified.

The first step is the Monte Carlo sample generation and the
second step is the Monte Carlo sample evaluation. Repeat the
two steps to take a sufficiently large number of (say 10,000)
Monte Carlo samples, and the trip rate of the current operation
schedule can be estimated as the ratio of the number of sam-
ples where the system trips out to the total number of Monte
Carlo samples. If the current trip rate is less than and yet close
enough to the target trip rate, the resultant operation schedule
is the desired schedule and the execution of the algorithm exits.
Otherwise, the algorithm jumps from step C to step A and con-
tinues its execution, as is described in Fig. 3.

Although the Monte Carlo simulation described above ex-
hibits relative generality and insensitivity to stochastic charac-
teristics of energy consumption patterns, it is expensive for ac-
curate trip rate estimation of an operation schedule. Therefore,
the Latin Hypercube sampling method is adopted in this work
to improve the efficiency of trip rate estimation for an operation
schedule by sampling energy consumption more systematically.

The Latin Hypercube sampling (LH), first described by
McKay et al. in [46], has been utilized in uncertainty analysis
to generate multivariate samples of statistical distributions. For
a one-dimensional variable-sampling, it starts by estimating
the uncertainty of a variable using a probability distribution,
dividing the range of the variable into intervals of equal prob-
ability, and generating a sample value for the variable in each
interval.

A two-dimensional variable-sampling is used to illustrate the
idea of LH sampling. Given two random variables (z,y) that
are to be simulated. 4 simulation samples of the variable can be
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Fig. 5. Random sampling versus Latin Hypercube sampling (a) Random sam-
pling (b) Latin Hypercube sampling.

obtained by randomly generating 4 pairs of (z,y). As is shown
in Fig. 5(a), these samples cannot well represent the simulation
space.

LH sampling technique can be utilized to tackle the above
non-representative sampling issue. In LH sampling, the range
of each variable is divided into equally probable intervals, each
of which can associate with one and only one simulation sample.
As is illustrated in Fig. 5(b), the simulation domain is first di-
vided into 4 x 4 grids of equal probability. When one grid is se-
lected to generate a simulation sample, grids with the same row
or column can not be the candidate grids for future sample gen-
eration. The samples in Fig. 5(a) represent the standard Monte
Carlo samples. They cover only a small part of the simulation
space, and thus a large number of samples are needed. In con-
trast, LH sampling can use much smaller number of samples to
cover the simulation space. As a result, the simulation time can
be significantly reduced.

C. Adaptation of Offline Operation Schedules to Online
Scheduling

The proposed energy consumption scheduling algorithm con-
sists of two parts, that is, the offline scheduling algorithm and
the online adaptation algorithm. The offline scheduling algo-
rithm is first designed assuming that all inputs of the algorithm
are given. In other words, it is assumed that the energy con-
sumed by household appliances and the energy produced by the
solar panel are known in advance. As a result, the offline op-
eration schedule is optimum. However, when the system is in
operation, the energy consumed by household appliances and
the energy produced by the solar panel deviate from the values
utilized to optimize the offline operation schedule. Thus, the op-
timality of the offline operation scheduling is lost and the online
operation needs to be tuned to compensate for the optimality

loss.

Let A" . 4 7 denote the runtime variation (increase) in the
energy demand of appliances ¢ € A in the interval of 7, and
let Ae? the runtime variation (increase) in the harvested solar
energy, then the combined variation (increase) in grid energy
attributed to the concerned household appliances and the solar
energy is denoted by AP” and can be expressed as AP™ =
Ae] =AY .4z, The APT is essentially the modified varia-
tion in the solar energy by considering the offset to the variation
in energy demand of household appliances. The AP” could be
greater than, less than, or equal to 0. For each case, the battery
status is checked before disposal of solar energy. The solar en-
ergy could be consumed, stored in the battery for future use,
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or wasted due to limitation of battery capacity, as is detailed as
follows.

« AP7 > 0: If battery is full, and the consumption of en-
ergy from electrical grid is not scheduled, that is, only solar
energy is scheduled at the moment, then discard the extra
solar energy; if battery is full and the consumption of en-
ergy from electrical grid is scheduled, then use solar in-
stead of utility energy. If battery is not full, and the current
price of utility electricity is higher than the average utility
electricity price, then use the solar energy; else if the cur-
rent electricity price is lower than the average electricity
price, then store the solar energy to battery.

o AP7 < 0: If battery is empty, then use the energy from
electrical grid. If battery is not empty and the current utility
electricity price is higher than the average utility electricity
price, then use batter energy, else use the utility energy.

« AP™ = 0: Follow the offline appliance operation
schedule.

It is worth noting that the online tuning algorithm is an inte-
gral part of the proposed scheduling scheme. The uncertainty in
the energy demand of household appliances has been handled
by the offline scheduling algorithm, thus, the runtime variation
in the energy demand has minimal impact to the scheduling re-
sults. With respect to the solar energy, it in general accounts for
a small portion of the total energy consumed. Therefore, the run-
time variation of the solar energy is much smaller and its impact
to the scheduling results is negligible. In fact, the online tuning
algorithm aims at maximizing the benefit of the solar energy in-
stead of dealing with the impact of the above variations to the
scheduling results. The online algorithm prioritizes the solar en-
ergy and the energy from the grid, and utilizes solar energy at a
higher priority.

IV. SIMULATION RESULTS AND DISCUSSIONS

Extensive simulation experiments have been performed to
validate the proposed scheme, which aims to reduce customer
monetary expenses by utilizing the grid energy at off-peak
times and maximizing the benefit from the solar energy. Sets
of household appliances are carefully designed and generated.
The number of appliances in each set ranges from 5 to 30,
which is the typical number of household appliances [47]. The
operation start time ¢, and end time 6, of an appliance @ € A
are typically defined by customers. These values are such
designed and generated in the scheduling horizon that they
conform to human being’s practice pattern. The scheduling
horizon is assumed to be 24 hours. It is assumed that the mean
and standard deviation of the energy consumed by an appliance
during the scheduling horizon are known in advance. The mean
of the energy consumed by an appliance is generated according
to power characteristics of the appliance, and the standard
deviation is set to 20% of the x which is the mean. Hence, the
maximum energy value v** and minimum energy value
of the appliance a € A during the scheduling horizon 7" can be
derived based on the given mean and standard deviation. The
one day ahead pricing data released by Ameren Illinois Power
Corporation [28] are available online, and are taken as the price
input in the experiment.
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TABLE I
COMPARISON OF THE DETERMINISTIC LP-BASED APPROACH AND THE
TRADITIONAL SCHEDULING APPROACH

Appliance set Traditional Deterministic LP-based
size Runtime(s) Expense(¢) Runtime(s) Expense(¢) Expense reduction
5-10 0.02 102.7 0.8 60.0 41.7%
11-15 0.03 220.5 1.2 128.4 41.8%
16-20 0.05 294.5 1.8 174.6 40.7%
21-25 0.08 330.0 23 185.7 43.7%
26-30 0.11 393.6 2.9 220.5 44.1%

In the simulation, two sets of the KD200-54 P series PV
modules from the Kyocera Solar Incorporation [48] are taken
to construct a solar station for a residential unit. The total cost
of the two sets is 502 $ [49]. Assuming the lifetime of the PV
system is 20 years [50], the PV installation cost normalized to
the scheduling horizon 7’, which is 24 hours in the experiment,
is I. = 0.055 $. A battery of 845 kW throughput is taken as
energy storage. The battery costs 75 $, thus, the cost per kW is
b, = 0.089 § [51].

The peak power of the module in the data sheet is 220 W. For
the offline scheduling, the energy produced by the solar station
in each hour from 10:00 AM to 18:00 PM is assumed to be 100
Wh, 210 Wh, 300 Wh, 400 Wh, 400 Wh, 300 Wh, 210 Wh, and
100 Wh, respectively. The solar energy e produced in the in-
terval of 7 could be derived from these data. The solar operation
and maintenance cost is assumed to be ¢ = 0.01 § per kWh,
which is mostly due to washing the modules to remove dirt and
dust instead of due to the rare occurrence of technical failure
[52]. In the runtime, the generated solar energy is assumed to
deviate from the energy produced offline by 6%.

The proposed scheme was implemented in C++ and tested on
a Pentium Dual Core machine with 2.3 GHz T4500 CPU and 3
GB main memory. Simulation was run 1000 times on each set
of appliances, and the reported results are the results averaged
over all the runs.

Two approaches, referred to as the traditional scheduling ap-
proach and the deterministic LP-based approach, are compared
in scheduling time and monetary expense of energy. The tradi-
tional scheduling approach represents a typical scenario of en-
ergy consumption pattern for the traditional grid while the deter-
ministic LP-based scheme is the basis for the proposed sched-
uling algorithm.

In the traditional scheduling approach, an appliance is
switched on by the customer whenever it is needed and
switched off when the customer finishes using it. For sim-
plicity, it is assumed that the appliance operates at its rated
power. In this simulation of the experiment, the appliance
a € A with the feasible interval of [8,, 8,] is supposed to
be switched on at the instance ¢,, operate at its rated power,
and is switched off before the instance #,. This arrangement
of the appliance operation does not consider the time-varying
electricity price in the execution duration of the appliance, thus
incurring high customer monetary expenses.

In the deterministic LP-based approach, the operation
schedule is generated by running the LP solver only once other
than running the LP solver iteratively. As is shown in Table I,
for a residential unit with different number of household appli-
ances, the deterministic LP-based approach achieves significant
savings while taking longer scheduling time. For instance, for

a household with 5-10 appliances, the monetary expense of
energy for the traditional scheduling approach and the deter-
ministic LP-based approach is 102.7 and 60.0, respectively,
while the scheduling time of the two schemes is 0.02 s and 0.8
s, respectively. The deterministic LP-based approach reduces
the monetary expense of energy by about 42%.

Three cases of (3-based energy consumption scheduling
schemes, that is, the worst case (3 = 1), the best case (5 = 0),
and the proposed stochastic case (0 < S < 1), were im-
plemented. In the worst case where an appliance ¢« € A is
assumed to consume the maximum amount of energy y,'**, the
operation schedule is generated by running the LP solver only
once. Similarly, in the best case, the LP solver takes as input
the minimum energy value v™" for each appliance a € A,
and runs only once to produce the operation schedule. On the
contrary, the proposed stochastic design approach takes as
input the G-based energy budget for each appliance a € A, and
runs the LP solver iteratively to generate an expense efficient
operation schedule under a given trip rate requirement.

The three design cases are then compared in the expense of
energy consumption and scheduling time. The scheduling time
of the worst case and best case design is less than that of the sto-
chastic design. This is because the worst case and the best case
designing approaches run the LP solver only once while the pro-
posed stochastic approach iteratively runs the LP solver to gen-
erate the operation schedule. The monetary expense of the worst
case design is greater than that of the stochastic design, which is
in turn greater than that of the best case design. This is because
that the worst case design overestimates the energy consumed
by individual appliances while the best case design underesti-
mates the energy consumption. This misestimate of the energy
consumed by individual appliances also leads to the discrepancy
in trip rate of different designing approaches. Although the best
case solution has the minimum monetary expense, it leads to
significant tripping out which is useless in practice. As is illus-
trated in Table II, for a residential unit with 16—20 household
appliances and with trip rate requirement of 0.5%, the sched-
uling time of the worst case, the best case, and the proposed
stochastic design is 1.8 s, 1.8 s, and 7.6 s, respectively, and the
expense of utility energy of the three designs is 238.3, 116.1,
and 211.4, respectively. Due to the overestimation and underes-
timation of the energy consumed by individual appliance in the
residential unit, the trip rate of the worst case and the best case
design is 0% and 25.1%, respectively. The trip rate of the pro-
posed stochastic design is 0.5% for the residential unit, which
satisfies the given trip rate requirement.

The traditional scheduling and the stochastic scheduling ap-
proach are compared in terms of monetary expenses and sched-
uling time, and the results are presented in Table III. The pro-
posed stochastic design achieves up to 41% reduction in mone-
tary expenses at the cost of longer scheduling time. Note that the
proposed scheduling algorithm can always generate a monetary
expense efficient operation schedule within 10 seconds, which
is fast enough for household appliance applications.

Due to uncertainty of the renewable energy source and the
variation of energy demand of household appliances, the offline
operation schedule need to be tuned to fully utilize the benefit
from the solar energy and guarantee the customer satisfaction
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TABLE II
COMPARISON OF THE WORST CASE, THE BEST CASE, AND THE STOCHASTIC DESIGN IN TERMS OF MONETARY EXPENSE AND SCHEDULING TIME

Appliance set Worst case design (8 = 1) Best case design (8 = 0) Proposed stochastic design (0 < 8 < 1)
size Trip rate | Run time(s) | Expense(¢) | Trip rate | Run time(s) Expense(¢) | Trip rate | Run time(s) Expense(¢) Expense reduction
5-10 0% 0.7 79.0 3.8% 0.7 41.7 0.5% 2.8 60.7 23.2%
11-15 0% 1.1 172.4 15.9% 1.2 86.5 0.5% 3.5 149.7 13.2%
16-20 0% 1.8 238.3 25.1% 1.8 116.1 0.5% 7.6 2114 11.3%
21-25 0% 2.3 256.0 29.5% 2.4 121.4 0.5% 8.8 226.3 11.6%
26-30 0% 2.8 301.0 39.0% 2.8 143.8 0.5% 9.6 270.8 10.0%

TABLE III
COMPARISON OF THE PROPOSED STOCHASTIC DESIGNING APPROACH WITH
THE TRADITIONAL SCHEDULING APPROACH

Appliance set Traditional Proposed stochastic design
size Runtime(s) Expense(¢) Runtime(s) Expense(¢) Expense reduction
5-10 0.02 102.7 2.8 60.7 40.9%
11-15 0.03 220.5 35 149.7 32.1%
16-20 0.05 294.5 7.6 2114 28.2%
21-25 0.08 330.0 8.8 226.3 31.4%
26-30 0.11 393.6 9.6 270.8 31.2%
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Fig. 6. Compare the monetary expense of online and offline operation
schedule.

without violating the system trip rate requirement. Fig. 6 shows
a comparison of the customer monetary expense for online and
offline operation schedule. For various number of household
appliances, the customer monetary expense of online opera-
tion schedule is close to that of the optimized offline operation
schedule.

V. CONCLUSIONS

This paper proposes a stochastic energy consumption sched-
uling algorithm based on the time-varying pricing information
released by utility companies ahead of time. The proposed en-
ergy consumption scheduling algorithm is featured by an energy
adaptation variable /3 that models the stochastic property of cus-
tomer energy consumption practices. It takes as input the min-
imum and maximum amount of energy consumed by individual
appliances and the pre-defined target trip rate. The output of the
proposed algorithm is the desired 3 that approximates the proba-
bility distribution of customer energy consumption practice, and
the expense efficient appliance energy consumption schedule.
The proposed appliance operation scheduling algorithm also ac-
celerates the generation of the desired operation schedule by
paralleling the computing process. Simulation results show that
the proposed energy consumption scheduling scheme achieves
up to 41% monetary expenses reduction when compared to the
traditional scheduling scheme that models typical appliance op-
erations in traditional home scenario. The results also demon-
strate that when compared to a worst case design where an ap-
pliance is assumed to consume the maximum amount of energy,

the proposed design that considers the stochastic energy con-
sumption patterns achieves up to 24% monetary expenses re-
duction without violating the target trip rate of 0.5%. The mon-
etary expense of the runtime operation schedule is close to that
of the offline optimized operation schedule. Furthermore, the
proposed scheduling algorithm can always generate a monetary
expense efficient operation schedule within 10 seconds, which
is fast enough for household appliance applications. The future
work seeks to investigate the game theory based scheduling to
reduce peak-to-average ratio for a smart community based on
the scheduling technique proposed in this paper.
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