
 

Online Task-Scheduling for Fault-Tolerant Low-Energy 
Real-Time Systems* 

Tongquan Wei†, Piyush Mishra†, Kaijie Wu‡ and Han Liang‡ 
†ECE Department, Michigan Technological University, Houghton MI 49931, USA 

‡ECE Department, University of Illinois, Chicago IL 60607, USA 
†{twei, mishra}@mtu.edu, ‡{kaijie, hliang4}@uic.edu 

 
Abstract: In this paper we investigate fault tolerance and Dynamic 
Voltage Scaling (DVS) in hard real time systems. We present two low-
complexity fault-aware scheduling algorithms that combine feasibility 
analysis of Rate Monotonic Algorithm (RMA) schedules and DVS-
based frequency scaling using exact characterization of RMA 
algorithm. These algorithms lay the foundation for highly efficient 
online schemes that minimize energy consumption by adapting DVS 
policies to runtime behavior of tasks and fault occurrences without 
violating the offline feasibility analysis. Simulation results demonstrate 
energy savings of up to 60% over low-energy offline scheduling 
algorithms [22]. 

1. Introduction 
Embedded systems are highly susceptible to faults due to 

increasing level of integration, reducing size of transistor features, 
and lowering of voltage levels in integrated circuits [2],[3]. Hard 
real time embedded systems used in mission-critical applications 
such as navigation system, process control, and system monitoring 
must finish all scheduled tasks on time and demand high fault 
tolerance with low overheads. Need for reliability is rising even in 
non-critical applications since significant progress in technology is 
driving wide-scale deployment of real time systems in daily life 
products which are prone to operate in harsher environments but 
have lower expectancy of failures. Common examples include 
mobile devices and sensor networks deployed in open fields which 
suffer frequent jolts and damage and are exposed to strong 
radiations [1]. 

Fault tolerance mechanisms used for detecting and 
correcting faults can be classified based on (1) place of deployment, 
(2) fault coverage, (3) fault or error latency, and (4) cost of 
recovery. Typically, fault tolerance in real-time systems is achieved 
via online fault detection [6] followed by a hardware-based 
checkpoint and rollback recovery mechanism. It allows processor 
to rollback to previously known valid state to resume normal 
execution by exploiting the available slack time [7],[8]. 
Traditionally, fault tolerance techniques try to maximize fault 
coverage while minimizing the fault detection latency and 
associated costs [12],[13],[14]. Cost is usually measured in terms of 
hardware and/or time overheads and is of considerable importance 
to real time embedded systems due to severe resource constraints. 
Owing to the fast evolving application of real-time systems in 
battery-powered portable devices, energy consumption has 
emerged as another important design constraint. In this paper we 
propose a systematic approach to energy-efficient fault-tolerant 
task scheduling techniques for hard real-time systems. 

Although dynamic power management is an active area of 
research and several techniques have been proposed to minimize 
energy consumption at hardware level [3], software level [4], and 
system level [5], very little attention has been paid to exploit these 
techniques to design energy-efficient fault-tolerance schemes for 
real-time embedded systems. At hardware level power saving is 
achieved via various circuit design optimization strategies while at 
software level power efficient modes are selected using a software 

controller. At system level energy efficiency is achieved by 
dynamically reconfiguring active components of the system and 
selectively turning off system components when they are idle. One 
such promising power management technique is Dynamic Voltage 
Scaling (DVS) that exploits technological advances in power 
supply circuits to reduce energy consumption and has attracted 
considerable attention due to its effectiveness and ease of use 
[15],[16]. It reduces power consumption of processor by 
dynamically scaling down voltage at the cost of increased 
execution time [9],[10],[11]. 

1.1. Related work 
Melham et al. proposed techniques to exploit slacks in task 

schedules to reduce energy consumption while tolerating faults 
based on DVS [18]. They make several simplifying assumptions 
such as a task is susceptible to at most one fault occurrence and the 
processor can scale its frequency in continuous range. Zhang et al. 
developed an online scheduling algorithm that combines 
checkpointing with DVS to tolerate faults in soft real-time uni-
processor systems with periodic tasks [17]. In [19] they proposed a 
fixed priority offline scheme using Rate Monotonic Algorithm 
(RMA) to tolerate faults in hard real time systems based on 
simplified assumptions, such as fault-free checkpointing and 
rollback recovery and negligible DVS overheads and cost for 
restoration of system state. They proposed a computationally 
intensive algorithm to verify feasibility of task schedules while 
deterministically tolerating up to ‘k’ faults. It operates in two 
phases – the first phase performs feasibility analysis on 
checkpointing based scheme to tolerate ‘k’ faults and the second 
phase scales processor voltage to minimize energy consumption 
subject to timing constraints derived from feasibility analysis in 
phase 1. This scheme was improved in [22] to overcome simplistic 
assumptions, but at the cost of increased complexity in algorithm. 
For application level frequency scaling, where all tasks in a task set 
run at the same speed, the algorithm examines various processor 
frequency levels to determine the lowest frequency that satisfies 
timing constraints subject to ‘k’ faults. It has time complexity of 
O(n2RL), where n is the number of periodic tasks in a task set, R is 
the ratio of largest task period to smallest task period, and L is the 
number of frequency levels supported by the processor. For task 
level frequency scaling, where each task in a task set is assigned an 
individual frequency, the algorithm performs an exhaustive search 
to derive the optimal combination of speed assignments for each 
task such that all timing constraints are satisfied subject to ‘k’ faults. 
Time complexity in this case is O(n2RLn). Due to uncertainties in 
task execution times and fault occurrences these offline scheduling 
algorithms do not adapt well to the runtime behavior of tasks. 
Further, due to their high complexity they are not suitable for 
online re-evaluation of task schedules or frequency assignments. 

In this paper we propose efficient offline algorithms that 
combine feasibility analysis and voltage scaling for hard real time 
systems based on exact characterization of RMA. These algorithms 
lay the foundation for efficient online schemes that minimize 
energy consumption by adapting DVS policies to the runtime 
behavior of tasks and fault occurrences. 
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1.2. Outline 
Rest of the paper is organized as follows. Section 2 

describes the exact characterization of classic RMA algorithm (EC-
RMA) used for scheduling hard real time tasks. Section 3 
introduces the proposed EC-RMA based efficient offline schemes 
to verify feasibility of schedules and identify opportunities for DVS 
to save energy. Section 4 extends these schemes to dynamically re-
evaluate DVS policies online to adapt to runtime behavior of tasks 
and fault occurrences. Section 5 presents the experimental results to 
demonstrate energy savings. Section 6 presents the conclusions of 
study and future research directions. 

2. Scheduling algorithms for fault-tolerant hard real-
time systemsEquation Section 2 

Consider a task set consisting of n independent periodic 
tasks τ1, τ2, …, τn. Timing parameters of task τi are defined as a 
tuple τi = {Ti, Di, Ci}, where Ti is the period, Di is the deadline, and 
Ci is the worst case execution time in cycles under fault free 
conditions and without checkpointing overheads [22]. It is assumed 
that checkpointing intervals for a given task are equal but no 
assumption is made regarding relationship among the timing 
parameters. System parameters are defined as follows: 
• Cs: time needed by checkpointing schemes to save system 

state, referred to as checkpointing cost. 
• Cr: time needed to retrieve stored system state, referred to as 

state recovery cost. 
• k: upper bound on the number of faults that must be tolerated 

during each task instance. 
It is assumed that 
• Processor supports L discrete frequency levels: f1 < f2 < … < 

fL. 
• System parameters, Cs and Cr, are constant and independent 

of processor frequency scaling. 
• Tasks are arranged in decreasing order of priorities according 

to fixed priority offline scheme RMA [20], that is, T1 < T2 
< , …, < Tn such that period of τi is smaller than the period of 
τj for i<j. 

• Task set is scheduled using RMA and the resulting schedule is 
feasible under fault free condition. 

• Faults are detected as soon as they occur and online slack time 
is ready as soon as the task finishes execution. 

It was shown in [22] that under the assumption that all 
checkpoint intervals for the same task are equal, optimal number of 
checkpoints mi for task τi, that minimizes its worst case response 
time, is given by mi = Max(|| kC /Csi -1||, 0). Term || kC /Csi -1|| 

denotes the value from pair { kC /Csi -1,  kC /Csi -1} that 
minimizes the worst case response time of task τi. Therefore, total 
fault-free execution time of task τi is the sum of its execution time 
and checkpointing overhead, that is, Ci + miCs. 

Next sub-section provides an overview of the RMA 
algorithm and its exact characterization. Classical RMA analysis is 
conservative and the next sub-section shows that an exact 
characterization relaxes the constraints to tolerate faults without 
significant degradation in system performance. 

2.1. Exact characterization of RMA (EC-RMA) 
Rate Monotonic Algorithm (RMA), proposed by Liu and 

Layland in 1973, is an optimal fixed priority algorithm that 
schedules periodic tasks with hard deadlines by assigning higher 
priorities to tasks with shorter periods [20]. Original algorithm had 
strict requirements, such as tasks in a task set were independent and 
task deadlines were equal to or less than task periods, many of 
which were relaxed later to extend the scope of its application. 
Worst case behaviors of RMA occurs when all tasks in a task set 
are instantiated simultaneously and are ready for execution 

immediately after initiation. This time instant is called critical 
instant and it has been shown that a schedule of independent 
periodic tasks is feasible at critical instant if the first instance of 
each task is schedulable. The worst case utilization bound of a task 
set is given by n(21/n-1), where n is the number of tasks in the task 
set. 

J. Lehoczky et al. showed that the worst case analysis of 
RMA is a conservative estimate which can be relaxed based on an 
exact characterization of RMA to derive both sufficient and 
necessary conditions for feasibility analysis of a schedule [21]. 
They proved that a set of periodic tasks is schedulable for all task 
phasing if and only if the cumulative demand of each task on 
processor is equal to or less than the current available processor 
time. Specifically, let Wi(t)=∑(1 ≤ j ≤ i) Cj t/Tj denote the cumulative 
demand of task τi on processor over [0, t] assuming 0 as the critical 
instant. The necessary and sufficient condition for a set of periodic 
tasks to be schedulable is given as 
Max(1 ≤ i ≤ n){Min(0 < t ≤ Ti)[Wi(t)/t]} ≤1   (2.1) 

It was shown that only a finite number of time instants, 
called scheduling points, need to be checked for feasibility analysis 
since normalized demand of task τi on processor, Wi(t)/t, is strictly 
decreasing except at scheduling points. Scheduling points Si 
associated with task τi are defined as multiples of Tg for Tg ≤ Ti, 
that is,  
Si={hTg|g=1,2,…,i. h=1,2,…, Ti/Tg}.   (2.2) 
Therefore, equation (2.1) can be re-written as 
Max(1 ≤ i ≤ n){Min(t ∈ Si)[Wi(t)/t]} ≤ 1   (2.3) 

Proposed task scheduling techniques exploit exact 
characterization of RMA to efficiently verify the feasibility of an 
offline schedule in the presence of faults and voltage scaling and to 
adapt DVS policies online to variations in task execution time and 
fault occurrences. These techniques offer three advantages over 
previous techniques: (1) higher tolerance to fault overheads due to 
relaxed constraints of exact characterization (2) low-cost offline 
schedule feasibility analysis schemes, (3) efficient extension to 
online DVS policy re-evaluations due to relatively smaller number 
of scheduling points at which feasibility checks need to be 
performed. 

2.2. Feasibility analysis of fault-tolerant low-energy RMA 
schedules 

Fault correction using hardware-based checkpoints and 
rollback on fault detection incurs time overheads. A feasible RMA 
schedule may become infeasible in the presence of faults due to the 
extra cost of recovering from faults by rolling back and re-
executing the faulty computations. Faults can occur during normal 
computation, checkpointing, or state restoration after a fault 
occurrence. The worst case recovery cost, corresponding to all k 
faults occurring during checkpoint saving, includes k re-executions, 
kCi/(mi+1), and k checkpoint savings and state restorations, 
k(Cs+Cr). Therefore, total worst case cost of task τi with fault 
overheads is given by 
TCi=Ci+kCi/(mi+1)+miCs+k(Cs+Cr)    (2.4) 
Of this, the first three terms are frequency dependent while the last 
term is frequency-independent according to the assumptions made. 
The necessary and sufficient condition for feasibility analysis of an 
RMA schedule shown in (2.3) becomes 
Max(1 ≤ i ≤ n){Min(t ∈ Si)[∑(1 ≤ j ≤ i)TCj×t/Tj/t]} ≤ 1   (2.5) 

Feasibility of an RMA schedule may also be affected 
adversely due to prolonging of clock period as a result of voltage 
scaling in DVS capable processors. In deep submicron VLSI power 
consumption of a microprocessor is directly proportional to vdd

2f, 
where vdd is the supply voltage and f is the operating frequency 
[24]. Energy consumed by a task with N instruction cycles at clock 
period Clk is proportional to (Vdd

2×f)×(N×Clk)=Vdd
2N. It is easy to 

observe that energy savings can be maximized by scaling voltage 
as early and as low as possible. However, circuit delay increases 
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almost linearly as voltage decreases. Let ClkFS be the clock period 
at voltage Vdd and Clknew at scaled voltage level Vdd_new. Thus, 
Clknew ≈ ClkFSVdd/Vdd_new = α ClkFS, where α = Vdd/Vdd_new is the 
stretching factor [24]. 

In a hard real-time system tasks are subject to timing 
constraints and must finish execution before their deadlines. These 
constraints impose an upper bound on α. In other words, Vdd-new 
should be lower bounded to maintain a feasible schedule. Exact 
characterization of RMA provides a low-cost systematic approach 
to verify the feasibility of a schedule while tolerating faults for 
enhanced reliability and scaling voltage for energy-efficiency. 

3. Low-complexity energy-efficient offline scheduling 
Two techniques are proposed for energy-efficient fault-

tolerance in hard real-time systems. First technique selects a 
common frequency for all tasks of an application (a task set) while 
second technique selects individual frequencies for each task in the 
task set in order to minimize energy consumption. Both techniques 
integrate fault-tolerance and DVS policy evaluations to 
systematically search for the energy-optimum fault-tolerant 
schedule for a given set of tasks. It is assumed that the task set is 
schedulable in the absence of faults at a given frequency. Without 
loss of generality, it is assumed to be the lowest frequency level 
and can be easily modified to accommodate other frequency levels. 

Proposed techniques scale voltage as early and as low as 
possible while providing sufficient slack times to tolerate up to k 
faults. It is shown that the proposed algorithms systematically 
produce the most energy-efficient schedule as the first feasible 
solution and have lower complexity compared to previous 
techniques. Further, they support low-cost online DVS policy re-
evaluations to reduce energy consumption by adapting to variations 
in task execution times and fault occurrences, as discussed in 
section 4. Experimental results presented in section 5 show that 
online re-evaluation of DVS policies saves considerable energy 
compared to offline scheduling. 

3.1. Application level voltage scaling (A-DVS) 
A-DVS algorithm, shown in Figure 1, starts by calculating 

the scheduling points Si for each task τi and then iteratively 
performs feasibility analysis using EC-RMA to select optimum 
DVS strategy while tolerating k faults in each task instance. It uses 
a flag, Schedulable, which is set to ‘0’ whenever a task is found un-
schedulable at the current common frequency level and a buffer, 
Demand, to hold the cumulative workload demand on processor at 
scheduling points at the current frequency level. Inputs to the 
algorithm are an RMA schedule which is feasible at the lowest 
frequency level l=1, maximum number of faults each task should 
tolerate = k, checkpoint saving cost = Cs, and checkpoint recovery 
cost = Cr. 

Lines 2 to 4 of A-DVS algorithm iteratively compute 
scheduling points of n tasks with time complexity of O(n2R), where 
n is the number of tasks in the task set and R is the ratio of the 
largest period to the smallest period. Rest of the algorithm operates 
in 2 phases which are iterated for each task in the task set. Phase 1, 
consisting of lines 6 to 9, derives the optimum number of 
checkpoints at current frequency level to compute the worst case 
total cost TC of current task (τi) if the previous task was found 
schedulable, or the current and all higher priority tasks (τj, 1 ≤ j< i) 
if current task was found un-schedulable in the previous iteration. 
Phase 2, consisting of lines 10 to 22, verifies the schedulability of 
current task using equation (2.5) and performs frequency scaling if 
required. For each scheduling point of the current task lines 11 to 
14 compute the cumulative workload and lines 15 to 16 set the 
Schedulable flag appropriately. If the current task is found 
schedulable algorithm proceeds to the next task, else it scales the 
common frequency up by one level and re-evaluates the 
schedulability of the current task. This process continues until a 

Procedure  A-DVS(k, Cs, Cr)
1.    l=1; Schedulable=0; Demand=0; i=j=p=q=1;
2.    for τi , 1≤i≤n  do
3.                                                              ;
4. end for
5. for τi , 1≤i≤n  do

//Phase 1--Compute total cost TCj

6. for τj , j≤i do
7.              mj=max{||                            – 1||,0};
8.              TCj =(Cj+k×Cj /(mj+1))/f(l)+mj×Cs+k×(Cs+Cr);
9. end for

//Phase 2--Feasibility analysis and frequency scaling
10. for siqЄ Si do
11.            Demand =0;
12.            for τp , 1≤p≤ i  do
13.                 Demand = Demand +TCp× ;
14.            end for
15.            if Demand≤siq then Schedulable=1; break;
16.            else Schedulable=0; end if
17.       end for
18.       if Schedulable =0 then
19.            i--; j=1;
20.            if l < L then l++;
21.            else print “Infeasible Schedule”; break; end if
22.    else j=i+1;   end if
23. end for 

jk C /(f( ) Cs)l× ×

iq ps T  

{ }i g i gS = h T |g=1,2,...,i. =1,2,..., T Th×   

 
Figure 1 Application level voltage scaling algorithm 

feasible schedule is found for all tasks or the highest frequency 
level is reached without satisfying equation (2.5), in which case the 
task set schedule is deemed infeasible. 

For example, assume that during iteration i task τj, for 1 ≤ j 
< i, are schedulable at frequency level l. A-DVS first computes TCi 
for task τi at frequency level l. Then, it evaluates equation (2.5) at 
each of the task’s scheduling points, siq, to check if τi is schedulable. 
If the condition is satisfied at any siq, task τi is schedulable at 
frequency level l and algorithm continues on to verify the next task 
τi+1, else it scales the frequency up by one level to fl+1, re-computes 
TCj for 1 ≤ j ≤ i and repeats the process. Note that it is not required 
to re-evaluate higher priority tasks τj (1 ≤ j < i) since scaling the 
common frequency up does not have any adverse affect on their 
schedulability. 

Time complexities of phase 1 and phase 2 of the algorithm 
are O(n2L) and O(Rn2L) respectively. Therefore, the overall time 
complexity of this algorithm for a set of n tasks is O(Rn2L) and the 
average time complexity per task is O(RnL), which is of the same 
order as the application level technique proposed in [22] but it 
supports efficient online adaptation of DVS policies to exploit 
runtime uncertainties in task execution times and fault occurrences 
to save energy, as shown in section 4.1.  

3.2. Task level voltage scaling (T-DVS) 
T-DVS algorithm, shown in Figure 2, is similar to A-DVS 

except that whenever a task is found un-schedulable it iteratively 
increases the frequencies of equal and higher priority tasks with 
lowest frequency level until the current task becomes schedulable 
or the highest frequency level for all tasks is reached and the task 
set is found infeasible. The approach is guided by the principle that 
maximum energy-efficiency is achieved by maintaining as low 
frequency for as long as possible. 

T-DVS calculates the scheduling points Si for each task τi 
and then iteratively performs feasibility analysis to select optimum 
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DVS strategy while tolerating k faults in each task instance. 
Besides the variables Schedulable and Demand defined in section 
3.1 three new variables Freqi and FreqLeveli are introduced to 
denote the frequency value and frequency level of task τi, and 
RefID to denote the index of task with minimum frequency. Inputs 
to the algorithm are an RMA schedule which is feasible at the 
lowest frequency level l=1, maximum number of faults each task 
instance should tolerate = k, checkpoint saving cost = Cs, and 
checkpoint recovery cost = Cr. 

Lines 2 to 4 iteratively compute the scheduling points of n 
tasks with time complexity of O(n2R). Rest of the algorithm 
operates in 2 phases which are iterated for each task in the task set. 
Phase 1, consisting of lines 6 to 7, derives the optimum number of 
checkpoints at current frequency level to compute the worst case 
total cost TCRefID for current task (τRefID) if the previous task was 
found schedulable, or the task with lowest frequency among all 
equal and higher priority tasks (τRefID, 1 ≤ RefID ≤ i) if the previous 
task was found un-schedulable. Unlike A-DVS, phase 1 of T-DVS 
takes constant time. 

Phase 2, consisting of lines 8 to 24, verifies the 
schedulability of current task using equation (2.5) and performs 
frequency scaling at task level, if required. For each scheduling 
point of the current task lines 9 to 12 compute the cumulative 
workload of tasks τp (1 ≤ p ≤ i) and lines 13 to 15 set the 
Schedulable flag appropriately. In lines 17 to 18 if the current task 
is found schedulable algorithm proceeds to the next task, else task 
with minimum frequency among all equal and higher priority tasks 
is found. In line 19 to 23 if the minimum frequency level is found 
equal to the highest frequency level the task set is deemed 
infeasible, else the frequency of this task is raised by one level and 
schedulability of task τi is re-evaluated using the updated 
cumulative workload. This process continues till a feasible 
schedule is found for all tasks or the highest level of frequency is 
reached without satisfying equation (2.5), in which case the task set 
schedule is deemed infeasible. This approach ensures that as many 
tasks run at as low frequency as possible to save energy. 

Unlike the task level offline feasibility analysis algorithm of 
[22] T-DVS does not need to exhaustively explore all Ln possible 
combinations of tasks and frequency levels. The first feasible 
schedule generated by the algorithm is energy-optimum since it 
consists of lowest possible frequency combinations for each task. 
Time complexity of T-DVS is also dominated by the time 
complexity of feasibility analysis and frequency scaling as 
compared to the cost O(n2R) for deriving scheduling points. Time 
complexity of feasibility analysis per task is determined by a nested 
loop consisting of nR iterations. A popular MINIMUM() algorithm 
with cost of O(n) [23] is used during frequency scaling to 
determine the task with minimum frequency level, FreqLevelj (1 ≤ j 
≤ i). In the worst case, nL frequency scaling is performed for each 
task and each scaling involves up to (nR+n) iterations to perform 
feasibility analysis at scheduling points and to find the minimum 
frequency. Therefore, feasibility analysis and frequency scaling 
involve nL(nR+n) iterations for each task and time complexity of 
T-DVS per task is O(Rn2L) which is order of magnitude better than 
previous techniques. Even though the time complexity of T-DVS is 
much higher than A-DVS, its online re-evaluation of DVS policies 
is considerably simpler, as shown in section 4.2. 

4. Re-evaluation of DVS policies  
Offline scheduling assumes that tasks exhibit worst case 

execution times and all ‘k’ faults occur during the checkpointing of 
tasks. However, runtime behavior of task execution times and 
occurrences of faults can vary significantly [25]. Hence, online re-
evaluation of DVS policies that adapt to runtime characteristics of 
tasks and faults can save significant energy. Proposed algorithms 
A-DVS and T-DVS provide efficient mechanisms to exploit the 
slack time generated during runtime to further slow down the 

Procedure   T-DVS(k, Cs, Cr)
1.    RefID=1;Freqi=f(1) and FreqLeveli=1 for 1≤i≤n;
2. for τi  , 1≤i≤n do
3.                                                              ;
4. end for
5. for τRefID , 1 ≤RefID≤n do

//Phase 1--Compute total cost TCi

6.         mRefID=max{||                                      – 1||,0};
7.         TCRefID=(CRefID+kCRefID /(mRefID+1))/FreqRefID+mRefIDCs+k(Cs+Cr);

//Phase 2--Feasibility analysis and frequency scaling
8.         for siqЄ Si do
9.              Demand =0;
10.            for τp, 1≤p≤i do
11.                 Demand = Demand +TCp× ;
12.            end for
13.            if Demand≤siq then
14.                 Schedulable = 1; break; 
15.            else Schedulable = 0; end if
16. end for
17. if Schedulable =1 then i++; RefID=i-1; continue;
18.       else
19.            Find Min(1≤j≤i)Freqj and Min(1≤j≤i)FreqLevelj; 
20.            if Min(1≤j≤i)FreqLevelj < L then
21.                 Min(1≤j≤i)FreqLevelj ++; 
22.                 Min(1≤j≤i)Freqj++; RefID=j-1; 
23. else print “Infeasible Schedule”; break;   end if
24. end if
25.    end for

RefID RefIDk C /(Freq Cs)× ×

{ }i g i gS = h T |g=1,2,...,i. =1,2,..., T Th×   

iq pTs  

 
Figure 2 Task level voltage scaling algorithm 

processor and save energy. Note that feasibility analysis carried out 
by A-DVS or T-DVS guarantees that offline schedules meet all 
timing constraints. Dynamic DVS policies proposed in this section 
operate within these bounds to ensure that the feasibility of 
resultant modified schedules is maintained. 
4.1. Re-evaluation of DVS policies at application 

levelEquation Chapter (Next) Section 4 
If A-DVS generates a feasible schedule at frequency level l 

for a given task set it implies that one or more tasks failed to satisfy 
equation (2.5) at frequency level (l-1). Slack time generated online 
due to less than expected number of faults and due to better than 
expected execution time of a task could be used to dynamically 
scale down the processor speed. At the end of execution of each 
task online DVS policies determine whether the generated slack 
time is sufficient to scale down the processor speed by comparing 
the amount of time needed for the schedule of remaining tasks to be 
feasible at fl-1 with the slack time generated. 

Execution time overflow, ovflij, models the additional time 
required by task τi to be schedulable at frequency level j. It is set to 
‘0’ if task τi is schedulable at frequency level j, else is computed as 
the difference between worst case response time Rij of task τi 
including fault overhead at frequency level j and its deadline Di, as 
shown below: 

R -D R Dij i ij iovfl =ij
0 R <Dij i


 ≥




    (4.1) 

This straightforward approach is highly computation intensive. We 
propose an alternate simple, yet energy-efficient, approach to 
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compute ovflij. For each task τi ovflij is the minimum of difference 
between its cumulative time demand on processor at frequency 
level j and each scheduling point. Therefore, for task τi (1 ≤ i ≤ n) 
at each frequency level fj (1 ≤ j ≤ L), its corresponding ovflij is 
given by 
ovflij=Max{Min(t1 ∈ Si)(t2 - t1), 0}   (4.2) 
sij ∈ Si are the scheduling points for task τi and t2 is given by 
t2=∑(1 ≤ p ≤ i)[(Cp+kCp/(mp+1))/fj+k(Cs+Cr)+mpCs]sij/Tp. 

Proposed scheme incurs constant time overhead since both 
t1 and t2 can be pre-computed during offline feasibility analysis of 
A-DVS algorithm and stored in system memory. A task set of n 
periodic tasks feasible at frequency level l would require (n-1)×(l-1) 
memory. In general, the number of frequency levels supported by a 
processor is small and the number of tasks in a task set is also 
limited. For example, DVS capable Intel XScale processor supports 
only 3 voltage levels – 200, 300, and 400 MHz [22] and real life 
GAP task set contains only 17 tasks [26]. Therefore, memory 
overhead to store execution time overflows is quite small. Since the 
proposed scheme computes minimum value of overflow for each 
task, it provides better opportunity to scale the processor frequency. 

Let slkij denote the accumulated slack time after task τi 
finishes execution at frequency level j. slkij may include unutilized 
slack time generated by higher priority tasks and is assumed to be 
updated and ready as soon as task τi finishes its execution. In a 
fixed-priority real-time system slack time generated by task τi can 
only be used by tasks of lower priority since tasks with equal and 
higher priority finish execution before this slack is generated. If 
slkij is greater than the sum of execution time overflows of all 
remaining lower priority tasks, that is, slkij ≥ ∑(i+1 ≤ p ≤ n)ovflp,(j-1), 
processor speed is scaled down to frequency (j-1). 
Example: Consider a task set of four periodic tasks running on a 
processor which supports 3 frequency levels, as shown in Table 1. 
Execution time overflows for each task at frequency level 3 are 
zero, denoting a feasible schedule at frequency level 3. At 
frequency level 2, task τ1 and τ2 are schedulable while task τ3 and τ4 
are not schedulable since ovfl12 = ovfl22 = 0 but ovfl32 = 1 and 
ovfl42 = 2. Therefore, processor runs at frequency level 3 to 
maintain the feasibility of schedule. However, if the slack 
generated during runtime slk23 ≥ (ovfl32 + ovfl42) = 3 processor can 
be scaled down to level 2 without violating the feasibility of the 
schedule. 

Table 1 runtime DVS re-evaluation 
                Speed level 

Tasks 
1 2 3 

τ1 ovfl11=0 ovfl12=0 ovfl13=0 
τ2 ovfl21=3 ovfl22=0 ovfl23=0 
τ3 ovfl31=4 ovfl32=1 ovfl33=0 
τ4 ovfl41=5 ovfl42=2 ovfl43=0 

4.2. Re-evaluation of DVS policies at task level 
Dynamic re-evaluation of DVS strategies at task level is 

simpler since T-DVS statically derives optimum combination of 
frequency allocation to tasks and each frequency can be scaled 
individually. For example, after task τi-1 finishes execution 
scheduler checks if the accumulated slack time from tasks τj (1 ≤ j 
≤ i-1), slki-1, is large enough to scale down frequency Freqi for task 
τi by one or more levels. This is achieved by comparing the 
overflow for task τi at lower frequency levels with the generated 
slack. If slki-1 is more than the overflow, scale down processor 
frequency Freqi and update slki-1 by subtracting execution time 
overflow, else accumulate the slack time for tasks with lower 
priorities. For example, assume that task τi is scheduled to execute 
at frequency level l. After task τi-1 finishes its execution and the 
corresponding slack time slki-1 is ready, add slki-1 to the total cost 
TCi of task τi and compute new frequency level fl’ as follows: 
fl’=fl×TCi/(slki-1+ TCi)     (4.3) 

Comparing fl’ with the lower frequency levels supported by 
processor determines whether or not to scale the frequency for this 
task. This scheme takes constant time. 

The proposed simple scheme is not energy-optimal since 
available slack time is utilized only by the immediate next task 
rather than proportionally distributed among all remaining tasks. 
Since fault occurrences during remaining tasks determine the total 
energy consumption, optimal energy consumption cannot be 
calculated until all the tasks are executed. Trying to find an energy-
optimal scaling scheme during execution of a schedule may not 
bring any benefit at all. 

5. Experimental results 
Proposed schemes were validated for energy efficiency and 

fault tolerance using extensive simulation experiments. Real life 
task set benchmarks from [26] were used to compare energy 
savings with offline scheduling schemes proposed in [22]. 
Benchmarks consist of 6 to 17 tasks per set with significantly 
varying timing characteristics. Number of faults for each task was 
generated randomly between 0 to k and simulation was run 10000 
times to compensate for the stochastic property in fault occurrences. 
Two DVS-capable processors, Transmeta Crusoe which supports 5 
voltage and frequency levels (V, MHz) – (1.2, 300), (1.225, 400), 
(1.35, 533), (1.5, 600), and (1.6, 667) – and Intel XScale PXA260 
which supports 3 voltage and frequency levels (V, MHz) – (1.0, 
200), (1.1, 300), and (1.3, 400) – were used for energy consumption 
estimation [22]. 

Due to lack of space we present results for only two 
benchmarks – Computer Numerical Control (CNC) and an Inertial 
Navigation System (INS) – under the assumption that given task 
execution times correspond to maximum CPU speed. It is also 
assumed that energy consumption of checkpointing and data 
retrieval is 160µJ and energy for a single DVS transition is 30µJ, as 
suggested in [22], and online energy savings correspond only to the 
variation in fault occurrences. Simulation results are presented for 
both A-DVS and T-DVS techniques and compared with the JFTC, 
JFTA and JFTT techniques proposed in [22]. These techniques 
refer to offline constant frequency, application-level frequency 
scaling, and task-level frequency scaling respectively. E13 = (E1-
E3)/E1×100% denotes energy savings of A-DVS and T-DVS over 
JFTC and E23 = (E2-E3)/E2×100% denotes energy savings of A-
DVS over JFTA and T-DVS over JFTT. “NF” denotes that the 
schedule is infeasible. 
 Table 2 and Table 4 show that the proposed application 
level technique saves 22 to 52% and 30 to 52% energy over JFTC 
and 22 to 50% and 30 to 56% energy over JFTA on Crusoe and 
XScale processors respectively. Similarly,  
Table 3 and Table 5 show that the proposed task level technique 
saves 22 to 58% and 30 to 52% energy over JFTC and 18 to 57% 
and 30 to 60% over JFTT on Crusoe and XScale processors 
respectively. It is also shown (e.g. for k = 5 for CNC and k = 4 for 
INS) that proposed techniques have higher fault tolerance 
capabilities due to the relaxed constraints of exact characterization 
of RMA based approaches.  

Table 2 Application level for Transmeta Crusoe 
Task 
set 

k JFTC 
E1(mJ) 

JFTA 
E2(mJ) 

A-DVS 
E3 (mJ) 

E13 
(%) 

E23 
(%) 

1 18.1 14.6 10.1 44.2 30.8 
2 24.3 21.2 12.9 46.9 39.2 
3 29.8 26.6 15.1 49.3 43.2 
4 34.9 33.6 16.7 52.1  50.3 

CNC 

5 NF NF 18.6 - - 
1 6050.7 5467.2 3986.0 34.1 27.1 
2 6735.1 6735.1 5246.4 22.1 22.1 
3 7300.2 7300.2 5617.5 23.1 23.1 

INS 

4 NF NF 5935.8 - - 
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Table 3 Task level for Transmeta Crusoe 
Task 
set 

k JFTC 
E1(mJ) 

JFTT 
E2(mJ) 

T-DVS 
E3 (mJ) 

E13 
(%) 

E23 
(%) 

1 18.1 14.9 10.0 44.8 32.9 
2 24.3 21.1 12.9 46.9 38.9 
3 29.8 26.7 13.4 55.0 49.8 
4 34.9 34.1 14.5 58.5 57.5 

CNC 

5 NF NF 13.1 - - 
1 6050.7 5457.6 4087.9 32.4 25.1 
2 6735.1 6222.1 5070.4 24.7 18.5 
3 7300.2 7284.1 5637.4 22.8 22.6 

INS 

4 NF NF 5961.6 - - 
Table 4 Application level for Intel XScale 

Task 
set 

k JFTC 
E1(mJ) 

JFTA 
E2(mJ) 

A-DVS 
E3 (mJ) 

E13 
(%) 

E23 
(%) 

1 7.6 8.2 3.6 52.6 56.1 
2 12.8 13.8 7.1 44.5 48.6 
3 17.6 18.8 9.0 48.9 52.1 
4 22.2 22.2 10.5 52.7  52.7 

CNC 

5 NF NF 12.9 - - 
1 1326.2 1326.2 923.8 30.3 30.3 
2 1853.6 1853.6 1248.4 32.6 32.6 
3 2298.2 2298.2 1510.6 34.3 34.3 

INS 

4 NF NF 1758.8   
Table 5 Task level for Intel XScale 

Task 
set 

k JFTC 
E1(mJ) 

JFTT 
E2(mJ) 

T-DVS 
E3 (mJ) 

E13 
(%) 

E23 
(%) 

1 7.6 9.1 3.6 52.6 60.4 
2 12.8 14.5 7.5 41.4 48.3 
3 17.6 18.5 9.5 46.0 48.6 
4 22.2 22.5 11.0 50.5 51.1 

CNC 

5 NF NF 10.8 - - 
1 1326.2 1327.5 932.5 30.3 30.4 
2 1853.6 1855.9 1292.6 30.3 30.4 
3 2298.2 2299.0 1496.5 34.9 34.9 

INS 

4 NF NF 1726.5 - - 
According to [22] DVS on XScale is ineffective since 

overheads are comparable to energy savings due to low processor 
power consumption (178, 283, and 411 mW) and support for small 
number of voltage levels [22]. On other hand, proposed techniques 
obtain significant energy savings on both processors due to online 
re-evaluation of DVS policies. For example, for k = 3 and 
benchmark CNC, JFTT consumes more energy than JFTC (18.5mJ 
> 17.6mJ) while T-DVS consumes only 9.5 mJ since average 
number of runtime faults per task instance ranged from 0 to 1. Note 
that energy savings reported here correspond only to online 
variations in fault occurrences and overall savings will be much 
higher if variations in task execution times are also taken into 
account.  

Time complexity of proposed techniques is very small. For 
example, CNC benchmark consists of 6 independent tasks whose 
execution times vary from 35 to 720 µS and periods vary from 
2400 to 4800 µS.  Therefore, n = 8, R = 4800/2400 = 2, and L = 3 
for XScale and 5 for Crusoe. 

6. Conclusion 
We have presented efficient scheduling algorithms that 

combine feasibility analysis and DVS based on exact 
characterization of RMA and can dynamically adapt to runtime 
behavior of tasks and fault occurrences to minimize energy 
consumption. Proposed online DVS policy re-evaluation schemes 
are low-cost and can save up to 60% more energy compared to 
offline scheduling algorithms. As part of future work, proposed 
techniques will be extended to task sets with dependent tasks and 
non-critical phasing. 

7. Reference 
[1] I. Akyildiz, W Su, Y. Sankarasubramaniam, and E. Cayirci, 

“Wireless sensor networks: A survey,” IEEE Communications 
Magazine, 2002 

[2] S. Reinhardt and S. Mukherjee, “Transient fault detection via 
simultaneous multithreading,” ACM SIGARCH Computer 
Architecture News, 2000  

[3] A. Chandrakasan, S. Sheng and R. Brodersen, “Low-power CMOS 
digital design,” IEEE Journal of Solid-State Circuits, Vol. 27(4). Apr 
1992 

[4] J. Lorch and A. J. Smith, “Software strategies for portable computer 
energy management,” IEEE Personal Communication Magazine, Vol. 
5 (3), pp. 60-73, Jun 1998 

[5] L Benini, A Bogliolo, and G. Micheli, “A survey of design 
techniques for system-level dynamic power management,” IEEE 
Transactions on VLSI Systems, Vol. 8(3), Jun 2000 

[6] K. Shin and Y. Lee, “Error detection process-model, design and its 
impact on computer performance,” IEEE Transactions on Computers, 
Vol. C(33), pp. 529-540, Jun 1984 

[7] K. Chandy, J. Browne, C. Dissly and W. Uhrig, “Analytic models for 
rollback and recovery strategies in data base systems,” IEEE 
Transactions on Software Engineering, Vol. 1, pp. 100-110, Mar 
1975 

[8] D. Pradhan, Fault Tolerance Computing: Theory and Techniques, 
Prentice Hall, 1986 

[9] T. Ishihara and H. Yasuura, “Voltage scheduling problem for 
dynamically variable voltage processors,” Proceedings, ISLPED, 
Aug 1998 

[10] Y. Shin, K. Choi and T. Sakurai, “Power optimization of real time 
embedded systems on variable speed processors,” Proceedings, 
ICCAD, pp. 365-368, Jun 2000 

[11] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for 
real-time systems on variable voltage processors,” Proceedings, DAC, 
pp. 828-833, Jun 2001 

[12] K. Shin, T. Lin and Y. Lee, “Optimal checkpointing of real-time 
tasks,” IEEE Transactions on Computers, Vol. 36(11), pp. 1328-1341, 
Nov 1987 

[13] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint 
placement,” IEEE Transactions on Computers, Vol. 46(9), pp. 976-
985, Sep 1997 

[14] S. Kwak, B. Choi and B. Kim, “An optimal checkpointing strategy 
for real-time control systems under transient faults,” IEEE 
Transactions on Reliability, Vol. 50(3), pp. 293-301, Sep 2001 

[15] V. Gutnik and A. Chandrakasan, “An efficient controller for variable 
supply-voltage low power processing,” Symposium on VLSI Circuits, 
pp. 158-159, 1996 

[16] W. Namgoong, M. Yu, and T. Meng, “A high-efficiency variable-
voltage CMOS dynamic DC-DC switching regulator,” IEEE 
International Solid-State Circuits Conference, pp. 380-381, 1997 

[17] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive 
checkpointing in embedded real-time systems,” Proceedings, DATE, 
pp. 918-923, 2003 

[18] R. Melhem, D. Moss´and E. Elnozahy, “The interplay of power 
management and fault recovery in real-time systems,” IEEE 
Transactions on Computers, Vol. 53(2), pp. 217-231, Feb 2004 

[19] Y. Zhang and K. Chakrabarty, “Energy-aware fault tolerance in 
fixed-priority real-time embedded systems,” Proceedings, ICCAD, pp. 
209-214, 2003 

[20]  C. Liu and J. Layland, “Scheduling algorithms for 
multiprogramming in a hard real time environment,” Journal of the 
ACM, Vol. 20(1), pp. 46-61, 1973 

[21] J. Lehoczky, L. Sha and Y. Ding, “The rate monotonic scheduling 
algorithm: exact characterization and average case behavior,” 
Proceedings, IEEE Real-Time Systems Symposium, pp. 166-171, 
1989 

[22] Y. Zhang and K. Chakrabarty, “Task feasibility analysis and dynamic 
voltage scaling in fault-tolerant real-time embedded systems,” 
Proceedings, DATE, Vol. 2, 2004 

[23] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to 
Algorithm, The MIT Press, 2001 

[24] J. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated 
Circuits: a Design Perspective, Prentice Hall, 2002 

[25] Y.Shin and K. Choi, “Power conscious fixed priority scheduling for 
hard real-time systems,” Proceedings, DAC, pp. 134-139, 1999 

[26] A. Bruns, K. Tindell and A. Sellings, “Effective analysis for 
engineering real-time fixed priority schedulers,” IEEE Transactions 
on Software Engineering, Vol. 21(5), May 1995 

527


