

Online Task-Scheduling for Fault-Tolerant Low-Energy
Real-Time Systems*

Tongquan Wei†, Piyush Mishra†, Kaijie Wu‡ and Han Liang‡
†ECE Department, Michigan Technological University, Houghton MI 49931, USA

‡ECE Department, University of Illinois, Chicago IL 60607, USA
†{twei, mishra}@mtu.edu, ‡{kaijie, hliang4}@uic.edu

Abstract: In this paper we investigate fault tolerance and Dynamic
Voltage Scaling (DVS) in hard real time systems. We present two low-
complexity fault-aware scheduling algorithms that combine feasibility
analysis of Rate Monotonic Algorithm (RMA) schedules and DVS-
based frequency scaling using exact characterization of RMA
algorithm. These algorithms lay the foundation for highly efficient
online schemes that minimize energy consumption by adapting DVS
policies to runtime behavior of tasks and fault occurrences without
violating the offline feasibility analysis. Simulation results demonstrate
energy savings of up to 60% over low-energy offline scheduling
algorithms [22].

1. Introduction
Embedded systems are highly susceptible to faults due to

increasing level of integration, reducing size of transistor features,
and lowering of voltage levels in integrated circuits [2],[3]. Hard
real time embedded systems used in mission-critical applications
such as navigation system, process control, and system monitoring
must finish all scheduled tasks on time and demand high fault
tolerance with low overheads. Need for reliability is rising even in
non-critical applications since significant progress in technology is
driving wide-scale deployment of real time systems in daily life
products which are prone to operate in harsher environments but
have lower expectancy of failures. Common examples include
mobile devices and sensor networks deployed in open fields which
suffer frequent jolts and damage and are exposed to strong
radiations [1].

Fault tolerance mechanisms used for detecting and
correcting faults can be classified based on (1) place of deployment,
(2) fault coverage, (3) fault or error latency, and (4) cost of
recovery. Typically, fault tolerance in real-time systems is achieved
via online fault detection [6] followed by a hardware-based
checkpoint and rollback recovery mechanism. It allows processor
to rollback to previously known valid state to resume normal
execution by exploiting the available slack time [7],[8].
Traditionally, fault tolerance techniques try to maximize fault
coverage while minimizing the fault detection latency and
associated costs [12],[13],[14]. Cost is usually measured in terms of
hardware and/or time overheads and is of considerable importance
to real time embedded systems due to severe resource constraints.
Owing to the fast evolving application of real-time systems in
battery-powered portable devices, energy consumption has
emerged as another important design constraint. In this paper we
propose a systematic approach to energy-efficient fault-tolerant
task scheduling techniques for hard real-time systems.

Although dynamic power management is an active area of
research and several techniques have been proposed to minimize
energy consumption at hardware level [3], software level [4], and
system level [5], very little attention has been paid to exploit these
techniques to design energy-efficient fault-tolerance schemes for
real-time embedded systems. At hardware level power saving is
achieved via various circuit design optimization strategies while at
software level power efficient modes are selected using a software

controller. At system level energy efficiency is achieved by
dynamically reconfiguring active components of the system and
selectively turning off system components when they are idle. One
such promising power management technique is Dynamic Voltage
Scaling (DVS) that exploits technological advances in power
supply circuits to reduce energy consumption and has attracted
considerable attention due to its effectiveness and ease of use
[15],[16]. It reduces power consumption of processor by
dynamically scaling down voltage at the cost of increased
execution time [9],[10],[11].

1.1. Related work
Melham et al. proposed techniques to exploit slacks in task

schedules to reduce energy consumption while tolerating faults
based on DVS [18]. They make several simplifying assumptions
such as a task is susceptible to at most one fault occurrence and the
processor can scale its frequency in continuous range. Zhang et al.
developed an online scheduling algorithm that combines
checkpointing with DVS to tolerate faults in soft real-time uni-
processor systems with periodic tasks [17]. In [19] they proposed a
fixed priority offline scheme using Rate Monotonic Algorithm
(RMA) to tolerate faults in hard real time systems based on
simplified assumptions, such as fault-free checkpointing and
rollback recovery and negligible DVS overheads and cost for
restoration of system state. They proposed a computationally
intensive algorithm to verify feasibility of task schedules while
deterministically tolerating up to ‘k’ faults. It operates in two
phases – the first phase performs feasibility analysis on
checkpointing based scheme to tolerate ‘k’ faults and the second
phase scales processor voltage to minimize energy consumption
subject to timing constraints derived from feasibility analysis in
phase 1. This scheme was improved in [22] to overcome simplistic
assumptions, but at the cost of increased complexity in algorithm.
For application level frequency scaling, where all tasks in a task set
run at the same speed, the algorithm examines various processor
frequency levels to determine the lowest frequency that satisfies
timing constraints subject to ‘k’ faults. It has time complexity of
O(n2RL), where n is the number of periodic tasks in a task set, R is
the ratio of largest task period to smallest task period, and L is the
number of frequency levels supported by the processor. For task
level frequency scaling, where each task in a task set is assigned an
individual frequency, the algorithm performs an exhaustive search
to derive the optimal combination of speed assignments for each
task such that all timing constraints are satisfied subject to ‘k’ faults.
Time complexity in this case is O(n2RLn). Due to uncertainties in
task execution times and fault occurrences these offline scheduling
algorithms do not adapt well to the runtime behavior of tasks.
Further, due to their high complexity they are not suitable for
online re-evaluation of task schedules or frequency assignments.

In this paper we propose efficient offline algorithms that
combine feasibility analysis and voltage scaling for hard real time
systems based on exact characterization of RMA. These algorithms
lay the foundation for efficient online schemes that minimize
energy consumption by adapting DVS policies to the runtime
behavior of tasks and fault occurrences.

*This work is in part supported by Center for Integrated Systems in
Sensing, Imaging, and Communication (CISSIC) at MTU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011…$5.00

522

1.2. Outline
Rest of the paper is organized as follows. Section 2

describes the exact characterization of classic RMA algorithm (EC-
RMA) used for scheduling hard real time tasks. Section 3
introduces the proposed EC-RMA based efficient offline schemes
to verify feasibility of schedules and identify opportunities for DVS
to save energy. Section 4 extends these schemes to dynamically re-
evaluate DVS policies online to adapt to runtime behavior of tasks
and fault occurrences. Section 5 presents the experimental results to
demonstrate energy savings. Section 6 presents the conclusions of
study and future research directions.

2. Scheduling algorithms for fault-tolerant hard real-
time systemsEquation Section 2

Consider a task set consisting of n independent periodic
tasks τ1, τ2, …, τn. Timing parameters of task τi are defined as a
tuple τi = {Ti, Di, Ci}, where Ti is the period, Di is the deadline, and
Ci is the worst case execution time in cycles under fault free
conditions and without checkpointing overheads [22]. It is assumed
that checkpointing intervals for a given task are equal but no
assumption is made regarding relationship among the timing
parameters. System parameters are defined as follows:
• Cs: time needed by checkpointing schemes to save system

state, referred to as checkpointing cost.
• Cr: time needed to retrieve stored system state, referred to as

state recovery cost.
• k: upper bound on the number of faults that must be tolerated

during each task instance.
It is assumed that
• Processor supports L discrete frequency levels: f1 < f2 < … <

fL.
• System parameters, Cs and Cr, are constant and independent

of processor frequency scaling.
• Tasks are arranged in decreasing order of priorities according

to fixed priority offline scheme RMA [20], that is, T1 < T2
< , …, < Tn such that period of τi is smaller than the period of
τj for i<j.

• Task set is scheduled using RMA and the resulting schedule is
feasible under fault free condition.

• Faults are detected as soon as they occur and online slack time
is ready as soon as the task finishes execution.

It was shown in [22] that under the assumption that all
checkpoint intervals for the same task are equal, optimal number of
checkpoints mi for task τi, that minimizes its worst case response
time, is given by mi = Max(|| kC /Csi -1||, 0). Term || kC /Csi -1||

denotes the value from pair { kC /Csi -1, kC /Csi -1} that
minimizes the worst case response time of task τi. Therefore, total
fault-free execution time of task τi is the sum of its execution time
and checkpointing overhead, that is, Ci + miCs.

Next sub-section provides an overview of the RMA
algorithm and its exact characterization. Classical RMA analysis is
conservative and the next sub-section shows that an exact
characterization relaxes the constraints to tolerate faults without
significant degradation in system performance.

2.1. Exact characterization of RMA (EC-RMA)
Rate Monotonic Algorithm (RMA), proposed by Liu and

Layland in 1973, is an optimal fixed priority algorithm that
schedules periodic tasks with hard deadlines by assigning higher
priorities to tasks with shorter periods [20]. Original algorithm had
strict requirements, such as tasks in a task set were independent and
task deadlines were equal to or less than task periods, many of
which were relaxed later to extend the scope of its application.
Worst case behaviors of RMA occurs when all tasks in a task set
are instantiated simultaneously and are ready for execution

immediately after initiation. This time instant is called critical
instant and it has been shown that a schedule of independent
periodic tasks is feasible at critical instant if the first instance of
each task is schedulable. The worst case utilization bound of a task
set is given by n(21/n-1), where n is the number of tasks in the task
set.

J. Lehoczky et al. showed that the worst case analysis of
RMA is a conservative estimate which can be relaxed based on an
exact characterization of RMA to derive both sufficient and
necessary conditions for feasibility analysis of a schedule [21].
They proved that a set of periodic tasks is schedulable for all task
phasing if and only if the cumulative demand of each task on
processor is equal to or less than the current available processor
time. Specifically, let Wi(t)=∑(1 ≤ j ≤ i) Cj t/Tj denote the cumulative
demand of task τi on processor over [0, t] assuming 0 as the critical
instant. The necessary and sufficient condition for a set of periodic
tasks to be schedulable is given as
Max(1 ≤ i ≤ n){Min(0 < t ≤ Ti)[Wi(t)/t]} ≤1 (2.1)

It was shown that only a finite number of time instants,
called scheduling points, need to be checked for feasibility analysis
since normalized demand of task τi on processor, Wi(t)/t, is strictly
decreasing except at scheduling points. Scheduling points Si
associated with task τi are defined as multiples of Tg for Tg ≤ Ti,
that is,
Si={hTg|g=1,2,…,i. h=1,2,…, Ti/Tg}. (2.2)
Therefore, equation (2.1) can be re-written as
Max(1 ≤ i ≤ n){Min(t ∈ Si)[Wi(t)/t]} ≤ 1 (2.3)

Proposed task scheduling techniques exploit exact
characterization of RMA to efficiently verify the feasibility of an
offline schedule in the presence of faults and voltage scaling and to
adapt DVS policies online to variations in task execution time and
fault occurrences. These techniques offer three advantages over
previous techniques: (1) higher tolerance to fault overheads due to
relaxed constraints of exact characterization (2) low-cost offline
schedule feasibility analysis schemes, (3) efficient extension to
online DVS policy re-evaluations due to relatively smaller number
of scheduling points at which feasibility checks need to be
performed.

2.2. Feasibility analysis of fault-tolerant low-energy RMA
schedules

Fault correction using hardware-based checkpoints and
rollback on fault detection incurs time overheads. A feasible RMA
schedule may become infeasible in the presence of faults due to the
extra cost of recovering from faults by rolling back and re-
executing the faulty computations. Faults can occur during normal
computation, checkpointing, or state restoration after a fault
occurrence. The worst case recovery cost, corresponding to all k
faults occurring during checkpoint saving, includes k re-executions,
kCi/(mi+1), and k checkpoint savings and state restorations,
k(Cs+Cr). Therefore, total worst case cost of task τi with fault
overheads is given by
TCi=Ci+kCi/(mi+1)+miCs+k(Cs+Cr) (2.4)
Of this, the first three terms are frequency dependent while the last
term is frequency-independent according to the assumptions made.
The necessary and sufficient condition for feasibility analysis of an
RMA schedule shown in (2.3) becomes
Max(1 ≤ i ≤ n){Min(t ∈ Si)[∑(1 ≤ j ≤ i)TCj×t/Tj/t]} ≤ 1 (2.5)

Feasibility of an RMA schedule may also be affected
adversely due to prolonging of clock period as a result of voltage
scaling in DVS capable processors. In deep submicron VLSI power
consumption of a microprocessor is directly proportional to vdd

2f,
where vdd is the supply voltage and f is the operating frequency
[24]. Energy consumed by a task with N instruction cycles at clock
period Clk is proportional to (Vdd

2×f)×(N×Clk)=Vdd
2N. It is easy to

observe that energy savings can be maximized by scaling voltage
as early and as low as possible. However, circuit delay increases

523

almost linearly as voltage decreases. Let ClkFS be the clock period
at voltage Vdd and Clknew at scaled voltage level Vdd_new. Thus,
Clknew ≈ ClkFSVdd/Vdd_new = α ClkFS, where α = Vdd/Vdd_new is the
stretching factor [24].

In a hard real-time system tasks are subject to timing
constraints and must finish execution before their deadlines. These
constraints impose an upper bound on α. In other words, Vdd-new
should be lower bounded to maintain a feasible schedule. Exact
characterization of RMA provides a low-cost systematic approach
to verify the feasibility of a schedule while tolerating faults for
enhanced reliability and scaling voltage for energy-efficiency.

3. Low-complexity energy-efficient offline scheduling
Two techniques are proposed for energy-efficient fault-

tolerance in hard real-time systems. First technique selects a
common frequency for all tasks of an application (a task set) while
second technique selects individual frequencies for each task in the
task set in order to minimize energy consumption. Both techniques
integrate fault-tolerance and DVS policy evaluations to
systematically search for the energy-optimum fault-tolerant
schedule for a given set of tasks. It is assumed that the task set is
schedulable in the absence of faults at a given frequency. Without
loss of generality, it is assumed to be the lowest frequency level
and can be easily modified to accommodate other frequency levels.

Proposed techniques scale voltage as early and as low as
possible while providing sufficient slack times to tolerate up to k
faults. It is shown that the proposed algorithms systematically
produce the most energy-efficient schedule as the first feasible
solution and have lower complexity compared to previous
techniques. Further, they support low-cost online DVS policy re-
evaluations to reduce energy consumption by adapting to variations
in task execution times and fault occurrences, as discussed in
section 4. Experimental results presented in section 5 show that
online re-evaluation of DVS policies saves considerable energy
compared to offline scheduling.

3.1. Application level voltage scaling (A-DVS)
A-DVS algorithm, shown in Figure 1, starts by calculating

the scheduling points Si for each task τi and then iteratively
performs feasibility analysis using EC-RMA to select optimum
DVS strategy while tolerating k faults in each task instance. It uses
a flag, Schedulable, which is set to ‘0’ whenever a task is found un-
schedulable at the current common frequency level and a buffer,
Demand, to hold the cumulative workload demand on processor at
scheduling points at the current frequency level. Inputs to the
algorithm are an RMA schedule which is feasible at the lowest
frequency level l=1, maximum number of faults each task should
tolerate = k, checkpoint saving cost = Cs, and checkpoint recovery
cost = Cr.

Lines 2 to 4 of A-DVS algorithm iteratively compute
scheduling points of n tasks with time complexity of O(n2R), where
n is the number of tasks in the task set and R is the ratio of the
largest period to the smallest period. Rest of the algorithm operates
in 2 phases which are iterated for each task in the task set. Phase 1,
consisting of lines 6 to 9, derives the optimum number of
checkpoints at current frequency level to compute the worst case
total cost TC of current task (τi) if the previous task was found
schedulable, or the current and all higher priority tasks (τj, 1 ≤ j< i)
if current task was found un-schedulable in the previous iteration.
Phase 2, consisting of lines 10 to 22, verifies the schedulability of
current task using equation (2.5) and performs frequency scaling if
required. For each scheduling point of the current task lines 11 to
14 compute the cumulative workload and lines 15 to 16 set the
Schedulable flag appropriately. If the current task is found
schedulable algorithm proceeds to the next task, else it scales the
common frequency up by one level and re-evaluates the
schedulability of the current task. This process continues until a

Procedure A-DVS(k, Cs, Cr)
1. l=1; Schedulable=0; Demand=0; i=j=p=q=1;
2. for τi , 1≤i≤n do
3. ;
4. end for
5. for τi , 1≤i≤n do

//Phase 1--Compute total cost TCj

6. for τj , j≤i do
7. mj=max{|| – 1||,0};
8. TCj =(Cj+k×Cj /(mj+1))/f(l)+mj×Cs+k×(Cs+Cr);
9. end for

//Phase 2--Feasibility analysis and frequency scaling
10. for siqЄ Si do
11. Demand =0;
12. for τp , 1≤p≤ i do
13. Demand = Demand +TCp× ;
14. end for
15. if Demand≤siq then Schedulable=1; break;
16. else Schedulable=0; end if
17. end for
18. if Schedulable =0 then
19. i--; j=1;
20. if l < L then l++;
21. else print “Infeasible Schedule”; break; end if
22. else j=i+1; end if
23. end for

jk C /(f() Cs)l× ×

iq ps T

{ }i g i gS = h T |g=1,2,...,i. =1,2,..., T Th×

Figure 1 Application level voltage scaling algorithm

feasible schedule is found for all tasks or the highest frequency
level is reached without satisfying equation (2.5), in which case the
task set schedule is deemed infeasible.

For example, assume that during iteration i task τj, for 1 ≤ j
< i, are schedulable at frequency level l. A-DVS first computes TCi
for task τi at frequency level l. Then, it evaluates equation (2.5) at
each of the task’s scheduling points, siq, to check if τi is schedulable.
If the condition is satisfied at any siq, task τi is schedulable at
frequency level l and algorithm continues on to verify the next task
τi+1, else it scales the frequency up by one level to fl+1, re-computes
TCj for 1 ≤ j ≤ i and repeats the process. Note that it is not required
to re-evaluate higher priority tasks τj (1 ≤ j < i) since scaling the
common frequency up does not have any adverse affect on their
schedulability.

Time complexities of phase 1 and phase 2 of the algorithm
are O(n2L) and O(Rn2L) respectively. Therefore, the overall time
complexity of this algorithm for a set of n tasks is O(Rn2L) and the
average time complexity per task is O(RnL), which is of the same
order as the application level technique proposed in [22] but it
supports efficient online adaptation of DVS policies to exploit
runtime uncertainties in task execution times and fault occurrences
to save energy, as shown in section 4.1.

3.2. Task level voltage scaling (T-DVS)
T-DVS algorithm, shown in Figure 2, is similar to A-DVS

except that whenever a task is found un-schedulable it iteratively
increases the frequencies of equal and higher priority tasks with
lowest frequency level until the current task becomes schedulable
or the highest frequency level for all tasks is reached and the task
set is found infeasible. The approach is guided by the principle that
maximum energy-efficiency is achieved by maintaining as low
frequency for as long as possible.

T-DVS calculates the scheduling points Si for each task τi
and then iteratively performs feasibility analysis to select optimum

524

DVS strategy while tolerating k faults in each task instance.
Besides the variables Schedulable and Demand defined in section
3.1 three new variables Freqi and FreqLeveli are introduced to
denote the frequency value and frequency level of task τi, and
RefID to denote the index of task with minimum frequency. Inputs
to the algorithm are an RMA schedule which is feasible at the
lowest frequency level l=1, maximum number of faults each task
instance should tolerate = k, checkpoint saving cost = Cs, and
checkpoint recovery cost = Cr.

Lines 2 to 4 iteratively compute the scheduling points of n
tasks with time complexity of O(n2R). Rest of the algorithm
operates in 2 phases which are iterated for each task in the task set.
Phase 1, consisting of lines 6 to 7, derives the optimum number of
checkpoints at current frequency level to compute the worst case
total cost TCRefID for current task (τRefID) if the previous task was
found schedulable, or the task with lowest frequency among all
equal and higher priority tasks (τRefID, 1 ≤ RefID ≤ i) if the previous
task was found un-schedulable. Unlike A-DVS, phase 1 of T-DVS
takes constant time.

Phase 2, consisting of lines 8 to 24, verifies the
schedulability of current task using equation (2.5) and performs
frequency scaling at task level, if required. For each scheduling
point of the current task lines 9 to 12 compute the cumulative
workload of tasks τp (1 ≤ p ≤ i) and lines 13 to 15 set the
Schedulable flag appropriately. In lines 17 to 18 if the current task
is found schedulable algorithm proceeds to the next task, else task
with minimum frequency among all equal and higher priority tasks
is found. In line 19 to 23 if the minimum frequency level is found
equal to the highest frequency level the task set is deemed
infeasible, else the frequency of this task is raised by one level and
schedulability of task τi is re-evaluated using the updated
cumulative workload. This process continues till a feasible
schedule is found for all tasks or the highest level of frequency is
reached without satisfying equation (2.5), in which case the task set
schedule is deemed infeasible. This approach ensures that as many
tasks run at as low frequency as possible to save energy.

Unlike the task level offline feasibility analysis algorithm of
[22] T-DVS does not need to exhaustively explore all Ln possible
combinations of tasks and frequency levels. The first feasible
schedule generated by the algorithm is energy-optimum since it
consists of lowest possible frequency combinations for each task.
Time complexity of T-DVS is also dominated by the time
complexity of feasibility analysis and frequency scaling as
compared to the cost O(n2R) for deriving scheduling points. Time
complexity of feasibility analysis per task is determined by a nested
loop consisting of nR iterations. A popular MINIMUM() algorithm
with cost of O(n) [23] is used during frequency scaling to
determine the task with minimum frequency level, FreqLevelj (1 ≤ j
≤ i). In the worst case, nL frequency scaling is performed for each
task and each scaling involves up to (nR+n) iterations to perform
feasibility analysis at scheduling points and to find the minimum
frequency. Therefore, feasibility analysis and frequency scaling
involve nL(nR+n) iterations for each task and time complexity of
T-DVS per task is O(Rn2L) which is order of magnitude better than
previous techniques. Even though the time complexity of T-DVS is
much higher than A-DVS, its online re-evaluation of DVS policies
is considerably simpler, as shown in section 4.2.

4. Re-evaluation of DVS policies
Offline scheduling assumes that tasks exhibit worst case

execution times and all ‘k’ faults occur during the checkpointing of
tasks. However, runtime behavior of task execution times and
occurrences of faults can vary significantly [25]. Hence, online re-
evaluation of DVS policies that adapt to runtime characteristics of
tasks and faults can save significant energy. Proposed algorithms
A-DVS and T-DVS provide efficient mechanisms to exploit the
slack time generated during runtime to further slow down the

Procedure T-DVS(k, Cs, Cr)
1. RefID=1;Freqi=f(1) and FreqLeveli=1 for 1≤i≤n;
2. for τi , 1≤i≤n do
3. ;
4. end for
5. for τRefID , 1 ≤RefID≤n do

//Phase 1--Compute total cost TCi

6. mRefID=max{|| – 1||,0};
7. TCRefID=(CRefID+kCRefID /(mRefID+1))/FreqRefID+mRefIDCs+k(Cs+Cr);

//Phase 2--Feasibility analysis and frequency scaling
8. for siqЄ Si do
9. Demand =0;
10. for τp, 1≤p≤i do
11. Demand = Demand +TCp× ;
12. end for
13. if Demand≤siq then
14. Schedulable = 1; break;
15. else Schedulable = 0; end if
16. end for
17. if Schedulable =1 then i++; RefID=i-1; continue;
18. else
19. Find Min(1≤j≤i)Freqj and Min(1≤j≤i)FreqLevelj;
20. if Min(1≤j≤i)FreqLevelj < L then
21. Min(1≤j≤i)FreqLevelj ++;
22. Min(1≤j≤i)Freqj++; RefID=j-1;
23. else print “Infeasible Schedule”; break; end if
24. end if
25. end for

RefID RefIDk C /(Freq Cs)× ×

{ }i g i gS = h T |g=1,2,...,i. =1,2,..., T Th×

iq pTs

Figure 2 Task level voltage scaling algorithm

processor and save energy. Note that feasibility analysis carried out
by A-DVS or T-DVS guarantees that offline schedules meet all
timing constraints. Dynamic DVS policies proposed in this section
operate within these bounds to ensure that the feasibility of
resultant modified schedules is maintained.
4.1. Re-evaluation of DVS policies at application

levelEquation Chapter (Next) Section 4
If A-DVS generates a feasible schedule at frequency level l

for a given task set it implies that one or more tasks failed to satisfy
equation (2.5) at frequency level (l-1). Slack time generated online
due to less than expected number of faults and due to better than
expected execution time of a task could be used to dynamically
scale down the processor speed. At the end of execution of each
task online DVS policies determine whether the generated slack
time is sufficient to scale down the processor speed by comparing
the amount of time needed for the schedule of remaining tasks to be
feasible at fl-1 with the slack time generated.

Execution time overflow, ovflij, models the additional time
required by task τi to be schedulable at frequency level j. It is set to
‘0’ if task τi is schedulable at frequency level j, else is computed as
the difference between worst case response time Rij of task τi
including fault overhead at frequency level j and its deadline Di, as
shown below:

R -D R Dij i ij iovfl =ij
0 R <Dij i

 ≥

 (4.1)

This straightforward approach is highly computation intensive. We
propose an alternate simple, yet energy-efficient, approach to

525

compute ovflij. For each task τi ovflij is the minimum of difference
between its cumulative time demand on processor at frequency
level j and each scheduling point. Therefore, for task τi (1 ≤ i ≤ n)
at each frequency level fj (1 ≤ j ≤ L), its corresponding ovflij is
given by
ovflij=Max{Min(t1 ∈ Si)(t2 - t1), 0} (4.2)
sij ∈ Si are the scheduling points for task τi and t2 is given by
t2=∑(1 ≤ p ≤ i)[(Cp+kCp/(mp+1))/fj+k(Cs+Cr)+mpCs]sij/Tp.

Proposed scheme incurs constant time overhead since both
t1 and t2 can be pre-computed during offline feasibility analysis of
A-DVS algorithm and stored in system memory. A task set of n
periodic tasks feasible at frequency level l would require (n-1)×(l-1)
memory. In general, the number of frequency levels supported by a
processor is small and the number of tasks in a task set is also
limited. For example, DVS capable Intel XScale processor supports
only 3 voltage levels – 200, 300, and 400 MHz [22] and real life
GAP task set contains only 17 tasks [26]. Therefore, memory
overhead to store execution time overflows is quite small. Since the
proposed scheme computes minimum value of overflow for each
task, it provides better opportunity to scale the processor frequency.

Let slkij denote the accumulated slack time after task τi
finishes execution at frequency level j. slkij may include unutilized
slack time generated by higher priority tasks and is assumed to be
updated and ready as soon as task τi finishes its execution. In a
fixed-priority real-time system slack time generated by task τi can
only be used by tasks of lower priority since tasks with equal and
higher priority finish execution before this slack is generated. If
slkij is greater than the sum of execution time overflows of all
remaining lower priority tasks, that is, slkij ≥ ∑(i+1 ≤ p ≤ n)ovflp,(j-1),
processor speed is scaled down to frequency (j-1).
Example: Consider a task set of four periodic tasks running on a
processor which supports 3 frequency levels, as shown in Table 1.
Execution time overflows for each task at frequency level 3 are
zero, denoting a feasible schedule at frequency level 3. At
frequency level 2, task τ1 and τ2 are schedulable while task τ3 and τ4
are not schedulable since ovfl12 = ovfl22 = 0 but ovfl32 = 1 and
ovfl42 = 2. Therefore, processor runs at frequency level 3 to
maintain the feasibility of schedule. However, if the slack
generated during runtime slk23 ≥ (ovfl32 + ovfl42) = 3 processor can
be scaled down to level 2 without violating the feasibility of the
schedule.

Table 1 runtime DVS re-evaluation
 Speed level

Tasks
1 2 3

τ1 ovfl11=0 ovfl12=0 ovfl13=0
τ2 ovfl21=3 ovfl22=0 ovfl23=0
τ3 ovfl31=4 ovfl32=1 ovfl33=0
τ4 ovfl41=5 ovfl42=2 ovfl43=0

4.2. Re-evaluation of DVS policies at task level
Dynamic re-evaluation of DVS strategies at task level is

simpler since T-DVS statically derives optimum combination of
frequency allocation to tasks and each frequency can be scaled
individually. For example, after task τi-1 finishes execution
scheduler checks if the accumulated slack time from tasks τj (1 ≤ j
≤ i-1), slki-1, is large enough to scale down frequency Freqi for task
τi by one or more levels. This is achieved by comparing the
overflow for task τi at lower frequency levels with the generated
slack. If slki-1 is more than the overflow, scale down processor
frequency Freqi and update slki-1 by subtracting execution time
overflow, else accumulate the slack time for tasks with lower
priorities. For example, assume that task τi is scheduled to execute
at frequency level l. After task τi-1 finishes its execution and the
corresponding slack time slki-1 is ready, add slki-1 to the total cost
TCi of task τi and compute new frequency level fl’ as follows:
fl’=fl×TCi/(slki-1+ TCi) (4.3)

Comparing fl’ with the lower frequency levels supported by
processor determines whether or not to scale the frequency for this
task. This scheme takes constant time.

The proposed simple scheme is not energy-optimal since
available slack time is utilized only by the immediate next task
rather than proportionally distributed among all remaining tasks.
Since fault occurrences during remaining tasks determine the total
energy consumption, optimal energy consumption cannot be
calculated until all the tasks are executed. Trying to find an energy-
optimal scaling scheme during execution of a schedule may not
bring any benefit at all.

5. Experimental results
Proposed schemes were validated for energy efficiency and

fault tolerance using extensive simulation experiments. Real life
task set benchmarks from [26] were used to compare energy
savings with offline scheduling schemes proposed in [22].
Benchmarks consist of 6 to 17 tasks per set with significantly
varying timing characteristics. Number of faults for each task was
generated randomly between 0 to k and simulation was run 10000
times to compensate for the stochastic property in fault occurrences.
Two DVS-capable processors, Transmeta Crusoe which supports 5
voltage and frequency levels (V, MHz) – (1.2, 300), (1.225, 400),
(1.35, 533), (1.5, 600), and (1.6, 667) – and Intel XScale PXA260
which supports 3 voltage and frequency levels (V, MHz) – (1.0,
200), (1.1, 300), and (1.3, 400) – were used for energy consumption
estimation [22].

Due to lack of space we present results for only two
benchmarks – Computer Numerical Control (CNC) and an Inertial
Navigation System (INS) – under the assumption that given task
execution times correspond to maximum CPU speed. It is also
assumed that energy consumption of checkpointing and data
retrieval is 160µJ and energy for a single DVS transition is 30µJ, as
suggested in [22], and online energy savings correspond only to the
variation in fault occurrences. Simulation results are presented for
both A-DVS and T-DVS techniques and compared with the JFTC,
JFTA and JFTT techniques proposed in [22]. These techniques
refer to offline constant frequency, application-level frequency
scaling, and task-level frequency scaling respectively. E13 = (E1-
E3)/E1×100% denotes energy savings of A-DVS and T-DVS over
JFTC and E23 = (E2-E3)/E2×100% denotes energy savings of A-
DVS over JFTA and T-DVS over JFTT. “NF” denotes that the
schedule is infeasible.
 Table 2 and Table 4 show that the proposed application
level technique saves 22 to 52% and 30 to 52% energy over JFTC
and 22 to 50% and 30 to 56% energy over JFTA on Crusoe and
XScale processors respectively. Similarly,
Table 3 and Table 5 show that the proposed task level technique
saves 22 to 58% and 30 to 52% energy over JFTC and 18 to 57%
and 30 to 60% over JFTT on Crusoe and XScale processors
respectively. It is also shown (e.g. for k = 5 for CNC and k = 4 for
INS) that proposed techniques have higher fault tolerance
capabilities due to the relaxed constraints of exact characterization
of RMA based approaches.

Table 2 Application level for Transmeta Crusoe
Task
set

k JFTC
E1(mJ)

JFTA
E2(mJ)

A-DVS
E3 (mJ)

E13
(%)

E23
(%)

1 18.1 14.6 10.1 44.2 30.8
2 24.3 21.2 12.9 46.9 39.2
3 29.8 26.6 15.1 49.3 43.2
4 34.9 33.6 16.7 52.1 50.3

CNC

5 NF NF 18.6 - -
1 6050.7 5467.2 3986.0 34.1 27.1
2 6735.1 6735.1 5246.4 22.1 22.1
3 7300.2 7300.2 5617.5 23.1 23.1

INS

4 NF NF 5935.8 - -

526

Table 3 Task level for Transmeta Crusoe
Task
set

k JFTC
E1(mJ)

JFTT
E2(mJ)

T-DVS
E3 (mJ)

E13
(%)

E23
(%)

1 18.1 14.9 10.0 44.8 32.9
2 24.3 21.1 12.9 46.9 38.9
3 29.8 26.7 13.4 55.0 49.8
4 34.9 34.1 14.5 58.5 57.5

CNC

5 NF NF 13.1 - -
1 6050.7 5457.6 4087.9 32.4 25.1
2 6735.1 6222.1 5070.4 24.7 18.5
3 7300.2 7284.1 5637.4 22.8 22.6

INS

4 NF NF 5961.6 - -
Table 4 Application level for Intel XScale

Task
set

k JFTC
E1(mJ)

JFTA
E2(mJ)

A-DVS
E3 (mJ)

E13
(%)

E23
(%)

1 7.6 8.2 3.6 52.6 56.1
2 12.8 13.8 7.1 44.5 48.6
3 17.6 18.8 9.0 48.9 52.1
4 22.2 22.2 10.5 52.7 52.7

CNC

5 NF NF 12.9 - -
1 1326.2 1326.2 923.8 30.3 30.3
2 1853.6 1853.6 1248.4 32.6 32.6
3 2298.2 2298.2 1510.6 34.3 34.3

INS

4 NF NF 1758.8
Table 5 Task level for Intel XScale

Task
set

k JFTC
E1(mJ)

JFTT
E2(mJ)

T-DVS
E3 (mJ)

E13
(%)

E23
(%)

1 7.6 9.1 3.6 52.6 60.4
2 12.8 14.5 7.5 41.4 48.3
3 17.6 18.5 9.5 46.0 48.6
4 22.2 22.5 11.0 50.5 51.1

CNC

5 NF NF 10.8 - -
1 1326.2 1327.5 932.5 30.3 30.4
2 1853.6 1855.9 1292.6 30.3 30.4
3 2298.2 2299.0 1496.5 34.9 34.9

INS

4 NF NF 1726.5 - -
According to [22] DVS on XScale is ineffective since

overheads are comparable to energy savings due to low processor
power consumption (178, 283, and 411 mW) and support for small
number of voltage levels [22]. On other hand, proposed techniques
obtain significant energy savings on both processors due to online
re-evaluation of DVS policies. For example, for k = 3 and
benchmark CNC, JFTT consumes more energy than JFTC (18.5mJ
> 17.6mJ) while T-DVS consumes only 9.5 mJ since average
number of runtime faults per task instance ranged from 0 to 1. Note
that energy savings reported here correspond only to online
variations in fault occurrences and overall savings will be much
higher if variations in task execution times are also taken into
account.

Time complexity of proposed techniques is very small. For
example, CNC benchmark consists of 6 independent tasks whose
execution times vary from 35 to 720 µS and periods vary from
2400 to 4800 µS. Therefore, n = 8, R = 4800/2400 = 2, and L = 3
for XScale and 5 for Crusoe.

6. Conclusion
We have presented efficient scheduling algorithms that

combine feasibility analysis and DVS based on exact
characterization of RMA and can dynamically adapt to runtime
behavior of tasks and fault occurrences to minimize energy
consumption. Proposed online DVS policy re-evaluation schemes
are low-cost and can save up to 60% more energy compared to
offline scheduling algorithms. As part of future work, proposed
techniques will be extended to task sets with dependent tasks and
non-critical phasing.

7. Reference
[1] I. Akyildiz, W Su, Y. Sankarasubramaniam, and E. Cayirci,

“Wireless sensor networks: A survey,” IEEE Communications
Magazine, 2002

[2] S. Reinhardt and S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” ACM SIGARCH Computer
Architecture News, 2000

[3] A. Chandrakasan, S. Sheng and R. Brodersen, “Low-power CMOS
digital design,” IEEE Journal of Solid-State Circuits, Vol. 27(4). Apr
1992

[4] J. Lorch and A. J. Smith, “Software strategies for portable computer
energy management,” IEEE Personal Communication Magazine, Vol.
5 (3), pp. 60-73, Jun 1998

[5] L Benini, A Bogliolo, and G. Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Transactions on VLSI Systems, Vol. 8(3), Jun 2000

[6] K. Shin and Y. Lee, “Error detection process-model, design and its
impact on computer performance,” IEEE Transactions on Computers,
Vol. C(33), pp. 529-540, Jun 1984

[7] K. Chandy, J. Browne, C. Dissly and W. Uhrig, “Analytic models for
rollback and recovery strategies in data base systems,” IEEE
Transactions on Software Engineering, Vol. 1, pp. 100-110, Mar
1975

[8] D. Pradhan, Fault Tolerance Computing: Theory and Techniques,
Prentice Hall, 1986

[9] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” Proceedings, ISLPED,
Aug 1998

[10] Y. Shin, K. Choi and T. Sakurai, “Power optimization of real time
embedded systems on variable speed processors,” Proceedings,
ICCAD, pp. 365-368, Jun 2000

[11] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors,” Proceedings, DAC,
pp. 828-833, Jun 2001

[12] K. Shin, T. Lin and Y. Lee, “Optimal checkpointing of real-time
tasks,” IEEE Transactions on Computers, Vol. 36(11), pp. 1328-1341,
Nov 1987

[13] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint
placement,” IEEE Transactions on Computers, Vol. 46(9), pp. 976-
985, Sep 1997

[14] S. Kwak, B. Choi and B. Kim, “An optimal checkpointing strategy
for real-time control systems under transient faults,” IEEE
Transactions on Reliability, Vol. 50(3), pp. 293-301, Sep 2001

[15] V. Gutnik and A. Chandrakasan, “An efficient controller for variable
supply-voltage low power processing,” Symposium on VLSI Circuits,
pp. 158-159, 1996

[16] W. Namgoong, M. Yu, and T. Meng, “A high-efficiency variable-
voltage CMOS dynamic DC-DC switching regulator,” IEEE
International Solid-State Circuits Conference, pp. 380-381, 1997

[17] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive
checkpointing in embedded real-time systems,” Proceedings, DATE,
pp. 918-923, 2003

[18] R. Melhem, D. Moss´and E. Elnozahy, “The interplay of power
management and fault recovery in real-time systems,” IEEE
Transactions on Computers, Vol. 53(2), pp. 217-231, Feb 2004

[19] Y. Zhang and K. Chakrabarty, “Energy-aware fault tolerance in
fixed-priority real-time embedded systems,” Proceedings, ICCAD, pp.
209-214, 2003

[20] C. Liu and J. Layland, “Scheduling algorithms for
multiprogramming in a hard real time environment,” Journal of the
ACM, Vol. 20(1), pp. 46-61, 1973

[21] J. Lehoczky, L. Sha and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,”
Proceedings, IEEE Real-Time Systems Symposium, pp. 166-171,
1989

[22] Y. Zhang and K. Chakrabarty, “Task feasibility analysis and dynamic
voltage scaling in fault-tolerant real-time embedded systems,”
Proceedings, DATE, Vol. 2, 2004

[23] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to
Algorithm, The MIT Press, 2001

[24] J. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated
Circuits: a Design Perspective, Prentice Hall, 2002

[25] Y.Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” Proceedings, DAC, pp. 134-139, 1999

[26] A. Bruns, K. Tindell and A. Sellings, “Effective analysis for
engineering real-time fixed priority schedulers,” IEEE Transactions
on Software Engineering, Vol. 21(5), May 1995

527

