头像

孙勋

地理科学学院      

个人资料

  • 部门: 地理科学学院
  • 毕业院校:
  • 学位:
  • 学历:
  • 邮编:
  • 联系电话: +86-21-33503142
  • 传真:
  • 电子邮箱: xsun@geo.ecnu.edu.cn
  • 办公地址: 华东师范大学闵行校区
  • 通讯地址: 上海市闵行区东川路500号

教育经历

Dr. Xun Sun has studied in the following universities for at least one university year, and achieved his Becholar in Mathematics and Computer Sciences, Master in Mathematics and Ph.D in Environmental Sciences.


Université Pierre-et-Marie-Curie (now Sorbonne Université), France. 

ARWU Rank 2020: 39

Université de Grenoble (now Université Grenoble Alpes), France.

ARWU Rank 2020: 99

National University of Singapore. 

ARWU Rank 2020: 80

The University of Adalide, Australia. 

ARWU Rank 2020: 150


工作经历

Columbia University, USA. 2014-now

ARWU Rank 2020: 7

East China Normal University, China. 2016-now

ARWU Rank 2020: 



个人简介

社会兼职

哥伦比亚大学客座副研究员


杂志编辑工作

Hydrological Sciences Journal编辑(Associate Editor),2019-2021


专业期刊审稿人工作

担任Water Resources Research, Journal of Hydrology, Hydrology and Earth System Sciences, Advances in Water Resources, Journal of Geophysical Research (Atmospheres), Earth's Future, Climatic Change等杂志审稿人。

研究方向


统计建模;洪水、暴雨频率分析;气候风险;金融衍生品与保险;不确定性分析;极端天气水文事件与极值理论


——欢迎报考硕士、博士研究生



指导研究生

秦延华,华东师范大学,博士,在读。

曾鹏,华东师范大学,硕士,毕业。

钱伟康,华东师范大学,硕士,在读;

邓乔予,华东师范大学,硕士,在读;

杨艺娴,华东师范大学,硕士,在读。


访问研究生:

Eva-Styliani Steirou, 德国亥姆霍兹波茨坦研究中心,博士,已毕业。(与Bruno Merz教授合作指导)

Siyan Wang,  美国哥伦比亚大学地球环境工程系,硕士,已毕业。(与Upmanu Lall教授共同指导)

                       哥伦比亚大学博士毕业。

Zhenkuan Su,  美国哥伦比亚大学访问博士生,在读(与Upmanu Lall教授共同指导)

Hang Zeng,     美国哥伦比亚大学访问博士生,已毕业(与Upmanu Lall教授共同指导)

Xiaochen Yuan, 美国哥伦比亚大学访问博士生,已毕业(与Upmanu Lall教授共同指导)


博士生公派出国交流项目

我们与德国亥姆霍兹波茨坦研究中心、波茨坦大学联合开发了、罗马大学联合开发了公派博士生研究课题,欢迎有意申请CSC资助出国的在读博士生咨询具体课题内容。


题目1:Rapid inundation mapping of flood events

Specific Requirements:

Excellent M.Sc., Diploma or equivalent degree in hydrology, geo-informatics, information technology or related natural/engineering sciences

•      Ability to independently develop and implement novel research approaches

•      Basic knowledge of flood risk processes and concepts

•      Experiences in machine learning, data mining techniques

•      Solid computer programming skills (e.g. in R, Python, Java)

•      Application experiences with geographical information systems and relational data management systems (e.g. Qgis, PostgreSQL/PostGIS)

•      Proficient oral and written English skills


题目2:Large-scale flood risk estimation

Specific Requirements:

  

Excellent M.Sc., Diploma or equivalent degree in hydrology, civil engineering, environmental engineering, geo-informatics or related natural/engineering sciences

•      Ability to independently develop and implement novel research approaches

•      Basic knowledge of flood risk processes and concepts

•      Solid computer programming skills (e.g. in R, Python, Java)

•      Experience with geographical information systems

•      Proficient oral and written English skills

•      Ability to work in a team and interest in interdisciplinary research



招生与培养

开授课程

科研项目

学术成果


科研项目:

- 上海市浦江人才计划,A类,2017/8-2019/8,主持

- 美国自然科学基金(NSF), America's Water - The changing landscape of risk, competing demands and climate, 2014-2018,参加


专著:

·Renard, B., Sun, X., and Lang, M. (2013), Bayesian Methods for Non-stationary Extreme Value Analysis, in Extremes in a Changing Climate: Detection, Analysis and Uncertainty, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert and S. Sorooshian, pp. 39-95, Springer Netherlands.


期刊论文:

1.Ma, Y., Sun, X.*, Chen, H., Hong, Y., Zhang, Y. (2021) A two-stage blending approach for merging multiple satellite precipitation estimates and rain gauge observations: an experiment in the northeastern Tibetan Plateau, Hydrol. Earth Syst. Sci., 25, 359-374. https://doi.org/10.5194/hess-25-359-2021 (IF=4.94)

2.Qin, Y., Sun, X.*, Li, B., Merz, B. (2021) A nonlinear hybrid model to assess the impacts of climate variability and human activities on runoff at different time scales. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-021-01984-4 (IF=2.35)

3.Zeng, P., Sun, X.*, Farnham, D.J. (2020) Skillful statistical models to predict seasonal wind speed and solar radiation in a Yangtze River estuary case study. Sci Rep 10, 8597. https://doi.org/10.1038/s41598-020-65281-w ((IF=4.01)

4.Su, Z., Sun, X.*, Devineni, N., Lall, U., Hao, Z., Chen, X. (2020) The effects of pre-season high flows, climate, and the Three Gorges Dam on low flow at the Three Gorges Region, China. Hydrological Processes. 34: 2088-2100. https://doi.org/10.1002/hyp.13714 (IF=3.19)

5.Su, Z., Ho, M., Hao, Z., Lall, U., Sun, X., Chen, X., Yan, L. (2020) The impact of the three gorges dam on summer streamflow in the yangtze river basin. Hydrological Processes.34: 705– 717. https://doi.org/10.1002/hyp.13619 (IF=3.19)

6.Huang, Y., Sun, X., Liu, M., Zhu, J., Yang, J., Du, W., Zhang, X., Gao, D., Qadeer, A., Xie, Y., Nie, N. (2019) A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China. Chemosphere. Feb;217:298-307. https://doi.org/10.1016/j.chemosphere.2018.10.172 (IF=5.11)

7.Yuan, X.*, Sun, X. (2019). Climate change impacts on socioeconomic damages from weather-related events in china. Natural Hazards.99, 1197–1213. https://doi.org/10.1007/s11069-019-03588-2 (IF=2.32)

8.Steirou, E.*, Gerlitz, L., Apel, H., Sun, X.*, and Merz, B. (2019) Climate influences on flood probabilities across Europe, Hydrol. Earth Syst. Sci., 23, 1305-1322. https://doi.org/10.5194/hess-23-1305-2019 (IF=4.94)

9.Qin, Y., Li, B.*, Sun, X, Chen, Y., Shi, X. (2019) Nonlinear response of runoff to atmospheric freezing level height variation based on hybrid prediction models. Hydrological Sciences Journal, 64(13):1556–1572. https://doi.org/10.1080/02626667.2019.1662023 (IF=2.43)

10.Wei, X., Liu, M.*, Yang, J., Du, W., Sun, X., Huang, Y., Zhang, X., Khalila, S., Luo, D., Zhou, Y. (2019) Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation. Atmospheric Environment, 203: 1-9. https://doi.org/10.1016/j.atmosenv.2019.01.046 (IF=4.04)

11.Wang, S., Sun, X.*, Lall, U., (2017) Residential electricity demand prediction during summer season across USA, Energy. https://doi.org/10.1016/j.energy.2017.08.076 (IF=4.520)

12.Morón, S., Amos, K., Edmonds, D.A., Payenberg, T., Sun, X., Thyer, M. (2017), Avulsion triggering by El Niño-Southern Oscillation and tectonic forcing on the tropical Magdalena River, Colombia, The Geological Society of America Bulletin. https://doi.org/10.1130/B31580.1 (IF=4.212)

13.Ho, M., Lall, U., Sun, X., Cook, E. (2017), Multiscale temporal variability and regional patterns in 555 year of conterminous US streamflow, Water Resources Research, 53, 3047–3066. https://dx.doi.org/10.1002/2016WR019632 (IF=4.397)

14.Zeng, H., Sun X.*, Lall, U., Fang, P. (2017), Extreme rainfall and flood predictions for Xidayang Reservoir in North China using climate informed Bayesian approaches, International Journal of Climatology, 37: 3810–3820. https://dx.doi.org/10.1002/joc.4955 (IF=3.760) 

15.Yuan, X., Sun, X., Zhao, W., Mi, Z., Wang, B., Wei, Y.* (2017). Forecasting china's regional energy demand by 2030: a bayesian approach. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2017.08.016 (IF=8.08)

16.Yuan, X., Sun, X, Lall, U., Mi, Z., He, J., Wei, Y. (2016), China’s socioeconomic damage risk from extreme events in a changing climate: a hierarchical Bayesian model, Climatic Change, 139(2): 169-181. https://doi.org/10.1007/s10584-016-1749-3 (IF=3.496)

17.Sun, X.*, Renard, B., Thyer, M., Westra S., Lang, M. (2015), A global analysis of the asymmetric effect of ENSO on extreme precipitation, Journal of Hydrology, Volume 530, November 2015, Pages 51-65. https://doi.org/10.1016/j.jhydrol.2015.09.016 (IF=3.483)

18.Sun, X.*, Lall, U., Merz, B., Dung, N.V. (2015), Hierarchical Bayesian clustering for nonstationary flood frequency analysis: Application to trends of annual maximum flow in Germany. Water Resources Research, 51(8), 6586–6601. https://doi.org/10.1002/2015WR017117 (IF=4.397)

19.Sun, X.*, Lall, U. (2015), Spatially coherent trends of annual maximum daily precipitation in the United States, Geophysical Research Letters, 42(22), 9781–9789. Featured in EOS Research spotlighthttps://dx.doi.org/10.1002/2015GL066483(IF=4.253)

20.Sun, X.*, Thyer, M., Renard, B., Lang, M. (2014), A general regional frequency analysis framework for quantifying local-scale climate effects: A case study of ENSO effects on Southeast Queensland rainfall, Journal of Hydrology, Volume 512, 6 May 2014, Pages 53-68. https://doi.org/10.1016/j.jhydrol.2014.02.025 (IF=3.483)




国际会议:

·Sun, X., (2018), How climate affects the dependence of extreme streamflow? American Geophysical Union Fall Meeting 2018, 10-14 Dec 2018, Washington DC, USA. (talk)

·Sun, X., (2017), co-convener of the session NH005. Dams and Reservoirs - Natural Hazards, Risks, and Solutions, American Geophysical Union, 2017 Fall Meeting, 11–15 December 2017, New Orleans, USA.

·Sun, X., (2017), Convener of the session HS5.9/CL2.17/CR6.9/NH1.9, Water infrastructure risks under climate variability and change: role of data analysis, operating approaches, hydro-meteorological and multi-sectoral forecasts. European Geosciences Union General Assembly 2017, 23–28 April 2017, Vienna, Austria.

·Sun, X., Russo, T., Wu, H., Lall, U. (2016), Spatio-temporal variation of the extreme precipitation in California. American Geophysical Union Fall Meeting 2016, 12-16 Dec 2016, San Francisco, USA. (poster)

·Sun, X., Lall, U., (2016), Climate risks to potato yields in Europe. European Geosciences Union General Assembly 2016, 18-22 April 2016, Vienna, Austria. (poster)

·Sun, X., Lall, U., Merz, B., Dung, N.V. (2015), A non-stationary Bayesian clustering framework for Identifying regional hydro-climate trends from large scale data. 26th IUGG General assembly 2015, 22 June-2 July, 2015, Prague, Czech Republic. (talk)

·Sun, X., Lall, U. (2014), A Bayesian Hierarchical framework for identifying regional hydroclimate trends or climate effects from continental or global data. American Geophysical Union Fall Meeting 2014, 15-19 Dec 2014, San Francisco, USA. (poster)

·Sun, X., Renard, B., Thyer, M., Westra S., Lang, M. (2013), An analysis of ENSO impact on global extreme rainfall using a Bayesian regional model. European Geosciences Union General Assembly 2013, 07-12 April 2013, Vienna, Austria. (poster)

·Sun, X., Thyer, M., Renard, B., Lang, M. (2012), Bayesian methods for non-stationary frequency analysis: impact of ENSO on maximum daily rainfall in Australia. Advanced Methods for Flood Estimation in a Variable and Changing Environment, organized as a Mid-term Conference of COST ES0901 ‘FloodFreq’ Action, 24-26 October 2012, Volos, Greece. (talk)

·Sun, X., Renard, B. and Lang, M. (2011). A Bayesian Analysis of Extreme Precipitation in Mediterranean France Using Non-Stationary GEV Models. 7th Conference on Extreme Value Analysis, Probabilistic and Statistical Models and their Applications, June 27th -July 1st, 2011, Lyon, France. (talk)

·Sun, X., Renard, B. and Lang, M. (2011). A Bayesian Analysis of Extreme Precipitation in Mediterranean France Using Non-Stationary GEV Models. Workshop, Environmental Risk and Extreme Events, 10-15 July 2011, Ascona, Switzerland. (talk) 


2021年3月22日更新



荣誉及奖励

10 访问

相关教师